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The LHC transverse coupled-bunch instability

 Context

 About impedances and wake fields

 The LHC impedance model

 A new multibunch simulation tool

 Instabilities in the LHC and comparison with 

experiments
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The Large Hadron Collider (LHC)

Aim: study very rare phenomena

→requires high-density and 
high-intensity beams.

27 km

3.5 TeV/proton
2.1014 protons per beam
25 m size

In 2011
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Beam dynamics in the LHC

 Beams guided along an orbit thanks to dipole magnets, and focused 
transversally thanks to quadrupole magnets.

→ in transverse, at first order, charge q of momentum p
0
 governed by 

Hill's equation:

Tune Q
x0

 = number of oscillations per turn = 
x
(circumference)/(2).

d2 x

ds2 +K (s)x=0 ⇒ x (s)=√ϵxβx (s)cos (μx(s)−μx0
)

s →longitudinal coordinate 
along the orbit

x → transverse coordinate
v → velocity along the orbitEmittance Beta function

Phase function
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Beam dynamics in the LHC

 Beams guided along an orbit thanks to dipole magnets, and focused 
transversally thanks to quadrupole magnets.

→ in transverse, at first order, charge q of momentum p
0
 governed by 

Hill's equation:

Tune Q
x0

 = number of oscillations per turn = 
x
(circumference)/(2).

d2 x

ds2
+ K (s)x=0 ⇒ x (s)=√ϵxβx (s)cos (μx (s)−μ x0

)
s →longitudinal coordinate 

along the orbit
x → transverse coordinate
v → velocity along the orbitEmittance Beta function

Phase function

 Beams also accelerated with a sinusoidal electric field (in RF cavity) 
→ creates longitudinal motion & momentum deviation p-p

0 
)/p

0

→ for each particle, different tune: Q
x
=Q

x0
+Q'

x

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Beam dynamics in the LHC

 Beams guided along an orbit thanks to dipole magnets, and focused 
transversally thanks to quadrupole magnets.

→ in transverse, at first order, charge q of momentum p
0
 governed by 

Hill's equation:

Tune Q
x0

 = number of oscillations per turn = 
x
(circumference)/(2).

d2 x

ds2
+ K (s)x=0 ⇒ x (s)=√ϵxβx (s)cos (μx (s)−μ x0

)
s →longitudinal coordinate 

along the orbit
x → transverse coordinate
v → velocity along the orbitEmittance Beta function

Phase function

d2 x

ds2 + K (s)x=
F x

p0 v
Force due to other particles, increasing 
with number of particles

 This picture is valid for single particle in the ring. In reality, we have to 
take into account collective effects→particles are interacting

 Beams also accelerated with a sinusoidal electric field (in RF cavity) 
→ creates longitudinal motion & momentum deviation p-p

0 
)/p

0

→ for each particle, different tune: Q
x
=Q

x0
+Q'

x

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Wake fields and impedances

 One source of instabilities are self-generated fields: electromagnetic (EM) 
fields created by a beam particle inside a structure (vacuum pipe, cavity, 
collimator, etc.), and felt by another particle.
→ results in an EM force, called wake field in time domain, beam-coupling 
impedance in frequency domain.

 Example: vacuum pipe

s

v=c

v=c
Orbit (pipe 
axis of 
symmetry)

Pipe wall
Induced (or 
”image”) currents

”Test” particle

”Source” particle

Direct EM interaction 
→ ”direct space-charge”

EM interaction through 
the pipe wall→ ”wall 
impedance”

x
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What is so particular about the 
impedance of the LHC collimators ?

 Classic approach for a ”cylindrical” collimator: classic thick 
wall formula

If wall thickness and radius b >> skin depth of the conductor 

then the image currents are almost at the boundary and one obtains the 
transverse wall impedance as (see e.g. Chao)

b

s

v=c

Induced currents

L= resistive length
r= permeability
Z0= 0.c

Indirect space-
charge, small in 
the LHC

Resistive-wall impedance → goes 
as 1/b3 → can be very large in 
narrow collimators (b~2mm)
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Wall impedance in the LHC 
collimators

 BUT in the case of graphite collimators, b< at low frequency (LHC: 
8 kHz is the first unstable line)

➔ Classical ”skin-depth” approximation breaks down, needs a more 
general theory.

 From cylindrical to flat (collimator-like) geometries, use usually 
”Yokoya” (KEK 92-196) form factors

→ also relies on skin-depth approximation, again a more general 
theory is required.

b

s

v=c

Induced currents

Z
cyl

Z
cyl

 * (form factor)Cross sections:
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Wall impedance: theory

 2D models: consider a longitudinally smooth element in the ring, of infinite length, and 
integrate the EM force from the source particle to the test particle, over a finite length.

⇒ Neglect thus all edge effects.

 Main advantage: for simple geometries, EM fields obtained (semi-) analytically without 
any other assumptions (except linearity, isotropy and homogeneity).

 Cross sections studied: multilayer axisymmetric and flat chambers
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Wall impedance: theory

 Essence of the formalism initially from B. Zotter (1969), in axisymmetric only. 

 Start from Maxwell equations in frequency domain:

 Playing with vector operations, get wave equations: e.g. for E

 Idea: decompose fields and source charge density thanks to Fourier transforms 

e.g. axisymmetric

with

Complex permittivity

Complex permeability

and (point-like 
source)

Continuous Fourier transform
Fourier series decomposition



ATS seminar 26/04/2012 - EPFL PhD thesis - N. Mounet

 

Wall impedance: theory

 Write wave equations for the longitudinal components E
s
 and H

s
,then identify the terms 

(drop integrals and sums), obtaining second order differential equations. Solutions:

➢ combination of modified Bessel functions of the radial coordinate r, in axisymmetric,
➢ combination of exponentials of the vertical coordinate in the flat case.

 Transverse components obtained from the longitudinal ones, thanks to Maxwell eqs.

 Integration constants determined from field matching (continuity of tangential field 
components) between adjacent layers. Instead of solving the full system by ”brute 
force”, use analytical trick: relate constants between adjacent layers by 4 x 4 matrices:

Constants (layer p+1) = M
p
p+1 . constants (layer p)

in the end:
Constants (last layer) = M . constants (first layer).

⇒ Only need to multiply simple 4x4 matrices and do a final inversion, to get all the 
constants.

 Finally, put back the Fourier transforms and/or series. In flat case, additional algebra to 
get a simple form. 
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Wall impedance: theory

 Electric field longitudinal component in the vacuum:

 axisymmetric

 

 flat

In the ”wall term”: only first terms of the sums are relevant when sufficiently close 
to the orbit → linear terms (m≤1, n≤2).

 From E
s
 we can get the EM force in vacuum, then upon integration over a finite 

length L and normalization (by the test and sources charges) we obtain the 
beam-coupling impedances as simple functions of the first few 

TM 
(m) 

(axisymmetric) or 
mn

 (flat). Again, keep only linear terms: dipolar terms 
proportional to source coordinates, quadrupolar ones to test coordinates.

Direct space-charge term Wall termConstants
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Wall impedance: results in axisymmetric

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel), 
compared to classic formula: 
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Wall impedance: results in axisymmetric

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel), 
compared to classic formula: Low frequencies: 

importance of general 
theory w.r.t classic 
formula (factor ~10 for 
imag. part, >100 for real 
part)
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Wall impedance: results in axisymmetric

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel), 
compared to classic formula: Low frequencies: 

importance of general 
theory w.r.t classic 
formula (factor ~10 for 
imag. part, >100 for real 
part)

Intermediate frequencies: 
classic formula valid 
(skin depth 
approximation).
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Wall impedance: results in axisymmetric

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel), 
compared to classic formula: 

High frequencies: 
resonance + new 
quadrupolar term (in 
this theory only).

Low frequencies: 
importance of general 
theory w.r.t classic 
formula (factor ~10 for 
imag. part, >100 for real 
part)

Intermediate frequencies: 
classic formula valid 
(skin depth 
approximation).
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Wall impedance: form factors

 Ratio of flat chamber impedances w.r.t longitudinal and transverse dipolar 
axisymmetric ones →generalize Yokoya factors (Part. Acc., 1993, p. 511). In the 
case of a single-layer ceramic (hBN) at 450 GeV:
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Wall impedance: form factors

 Ratio of flat chamber impedances w.r.t longitudinal and transverse dipolar 
axisymmetric ones →generalize Yokoya factors (Part. Acc., 1993, p. 511). In the 
case of a single-layer ceramic (hBN) at 450 GeV:

⇒In this particular case, 
frequency dependent 
form factors quite ≠ from 
the Yokoya factors.

(Note: this is a virtual example, 
not an actual LHC case)

⇒We can get such form 
factors for any material or 
material combination (i.e. 
several layers).
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Wake functions

 Wake functions are the Fourier transforms of the impedances, e.g.

In principle, straighforward to obtain from the impedances: ”do a FFT”.

In practice, usual method with discrete Fourier transform (DFT) with evenly spaced 
frequency mesh not accurate enough when dealing with large frequency range.

for a test particle at  seconds behind the source

⇒ developped a ”new” method 
(based on idea from 1928): given any 
frequency sampling, on each 
subinterval replace the impedance by 
its cubic interpolation, and integrate it 
analytically.

Example with  

→ clearly DFT fails (and also slower 
+ heavy memory load)

Z x=1 /√∣ω∣

LHC 
bunch 
length LHC intra-

bunch 
spacing 
(50ns)

LHC circumference
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Wake function: results (axisymmetric)

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel): 

High frequency 
oscillations (due to 
the THz resonance).
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The LHC impedance model

 Outline:

➢ Identify highest impedance contributors (physical elements around the 
beam) with simple criteria: length of the element – aperture – conductivity
→ we chose the 44 collimators, beam screens and vacuum pipe.

➢ For each of them, evaluate wall impedances and wake functions from the 
theories and tools presented. Note: this assumes longitudinal smoothness.

➢ Compute a broad-band model to take into account some non-smooth 
features (simple estimates from the LHC design report).

➢ Sum all these contributions into a model applied at a single-location around 
the ring (as a ”thin lens”)

→ can do that by weighting each contribution with the beta function at its 
real position.



ATS seminar 26/04/2012 - EPFL PhD thesis - N. Mounet

 

The LHC impedance model

 Examples of simplifications made to compute the impedances:
➢ Collimators:

➢ Beam screens:
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Multibunch simulation code

 HEADTAIL: beam dynamics simulation code, using macroparticles

➢ Pre-existing single-bunch version (G. Rumolo et al, PRST-AB, 2002):

macropart. i receives kick from the wake of all preceding slices:

then it is transported through the machine lattice:

(similar treatment for the other components of the macroparticle y
i
, z

i
).

➢ Extension of the code: allow several bunches + parallelization over the 
bunches (extensive use of EPFL clusters).

Parallelization quite efficient because each bunch can be treated 
independently → communication between processors only once per turn.

z

z

Slice S (x
S
, y

S
, z

S
)Macroparticle i

v
x

(x i

xi
)

(
x i

x i
)→ (

xi

xi

+ Δ x i


(xS , xSi

, zS−zS i
))

(x i

x i
)→M⋅( xi

x i
)

Bunch

Each 
turn
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Multibunch simulation code

 New HEADTAIL multibunch code benchmarked with respect to Laclare's theory, 
in simplified cases (dipolar impedance & equidistant bunches):

Complex tune shift = 
modification to the 
tune due to the most 
unstable mode.

→ New HEADTAIL reliable, and also more general than available theories or codes.
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Comparisons between simulations and 
beam-based impedance measurements

 12+36 bunches at 450GeV/c, coupled-bunch instability rise times measured 
vs. simulations (beam 2)

 at this energy, 
measured rise times well 
reproduced by the model.

Note: at 3.5 TeV/c, 
measured rise times at a 
factor 2-3 from the model.
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Predictions for the future operation of the 
LHC at 7 TeV/c : multibunch TMCI

 Transverse mode coupling instability (TMCI) intensity threshold can now be 
evaluated in coupled-bunch regime: at 7 TeV/c (50ns)

Single-bunch
Threshold ~ 6.4 1011 protons/bunch 

Coupled-bunch (1404 bunches) 
Threshold ~ 5 1011 protons/bunch 

⇒ Coupled-bunch TMCI around 20% more critical than single-bunch one.
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Summary

 Beam-coupling impedances and wake functions:

➢ Impedance theories on an axisymmetric multilayer chamber and flat 
multilayer chamber→ the most general to date, considering any velocity, any 
frequency and any azimuthal mode number m. New terms exhibited.

➢ New algorithm to compute Fourier integrals of analytical functions, fast and 
accurate, useful in particular for wake functions.

 Implemented in codes, also used for other machines (e.g. SPS, CLIC).

 Updated impedance and wake-function model for the LHC.

 Multibunch extension of an existing beam dynamics simulation code.

 Results concerning the LHC transverse coupled-bunch instability:

➢ case of small train of bunches vs. fully filled machine,
➢ coupled-bunch instabilities with intrabunch motion,
➢ comparison between measurements and simulations,
➢ transverse mode coupling threshold in coupled-bunch regime.



ATS seminar 26/04/2012 - EPFL PhD thesis - N. Mounet

 

What else can still be done ?

 About beam-coupling impedances theories: 

→ study in the same way other geometries: elliptical (e.g. for PS-Booster 
beam pipe), general 2D geometry (LHC beam screen weld).

 About the impedance model of the LHC:

→ add other contributors (kicker magnets, RF cavities),

→ better models (e.g. 3D) for contr. already taken into account (collimators).

 About the HEADTAIL beam dynamics simulation code:

→ implement other sources of nonlinearities (space-charge, beam-beam 
force at the collision point).

 About the LHC transverse coupled-bunch instability:

➢ study of the impact of the second derivative of the tune (on going),

➢ many other comparisons between measurements and simulations.
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Thank you for your attention !
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