

Planning the ADT experiments

Agnieszka Priebe

CERN BE-BI-BL

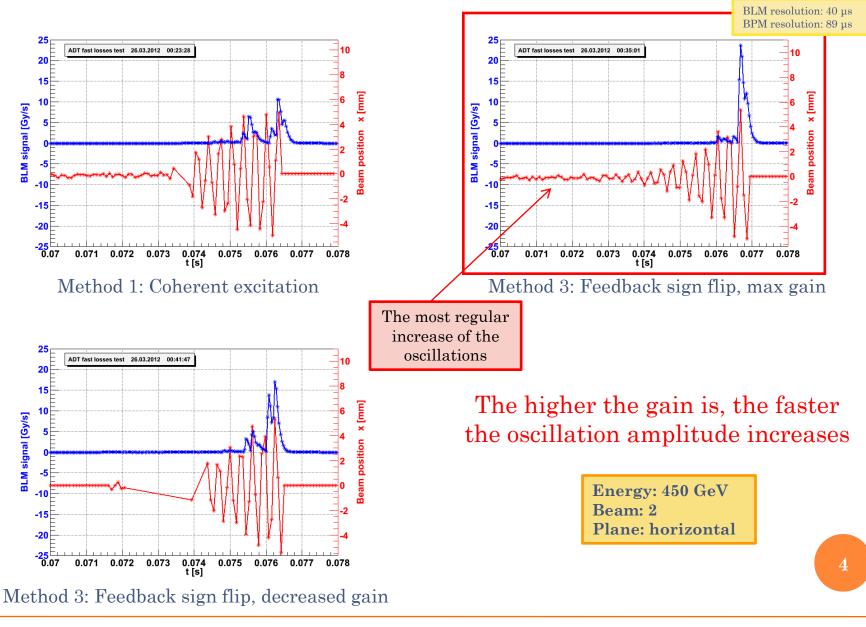
QTSWG Meeting

CONTENT

- 1. ADT modes
- 2. ADT fast losses test at 450 GeV (26th March 2012)
 - Experiment
 - Comparison with UFO losses
- 3. Planning of the MD
 - Aims
 - Strategy
 - Potential risks
- 4. Summary and conclusions

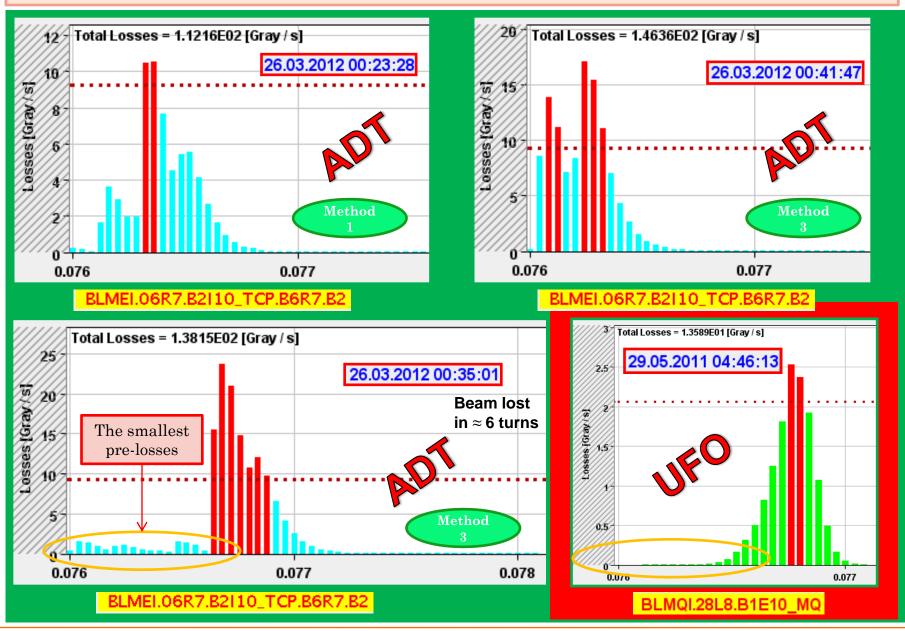
ADT MODES

The Transverse Damper (ADT) allows to create fast losses in the timescale of several LHC turns. Therefore, it can be used for UFO-like losses investigations.


There are three methods of exciting the beam:

- 1) Coherent excitation (used for injection/abort gap cleaning)
- 2) White noise excitation (used for controlled emittance blow-up)

The most convenient mode for the fast losses studies


ADT FAST LOSSES TEST (26TH MARCH 2012)

QTSWG Meeting

Agnieszka Priebe

ADT FAST LOSSES TEST VS UFOS

QTSWG Meeting

Agnieszka Priebe

A.Priebe, T.Baer, D.Valuch

Aims of the experiment

- Recreate the conditions of fast (~ 1ms) proton beam losses which are the most similar to the Quench Test
- 2) Study the use of the ADT system as a tool for loss induction
- 3) Check the impact of phase advance between transverse dampers and collimators on:
 - Excitation efficiency
 - Loss time structure
 - Loss efficiency

Strategy

A.Priebe, T.Baer, D.Valuch

1) Finding the critical loss location

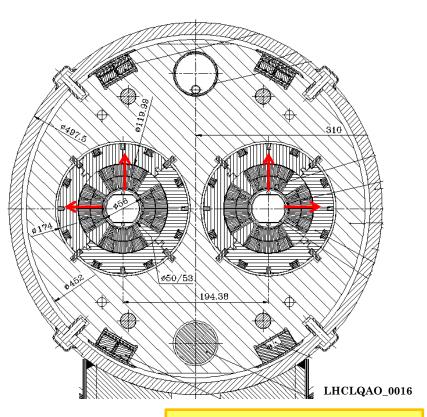
- a) Change a position of TCP collimator jaw
- b) Set up the excitation in appropriate plane with ADT feedback loop sign swap method and apply a small gain
- c) Inject one probe bunch
- d) Observe what is and where the highest signal of BLM occurs
- e) Decrease BLM monitor factor depending on a value of losses

2) Ultimate data acquisition

- a) Set the excitation in the appropriate plane at maximum gain
- b) Change feedback sign
- c) Inject a probe beam
- d) Collect PM data

3) Return to the nominal settings

- a) Move back a position of collimator jaws to the nominal conditions (responsibility of the collimators team)
- b) Change the BLM monitor factor to 1.0 (responsibility of the BLM team)


POSITION OF COLLIMATORS AT 450 GEV

A.Priebe, T.Baer, D.Valuch

Beam parameters

- 1) Beam intensity: 10^{10} protons (pilot bunch)
- 2) Beam energy: 450 GeV
- 3) Beam orientation:
 - a) Beam 1, horizontal
 - b) Beam 1, vertical
 - c) Beam 2, horizontal
 - d) Beam 2, vertical

Losses

Losses should appear on the outside of the coldmass

- a) Vertical plane $E_{\rm dep}$ on an upper collimator jaw
- b) Horizontal plane (beam 1) E_{dep} on an external collimator jaw
- c) Horizontal plane (beam 2) E_{dep} on an internal collimator jaw

The LHC arc half-cell location for autumn QT is not determined yet. Thus, all four scenarios of beam losses must be studied.

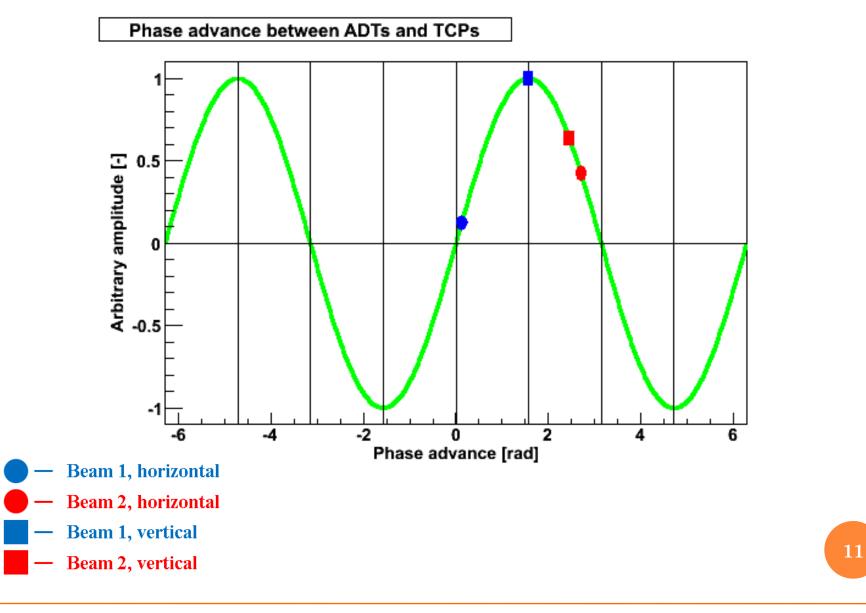
QTSWG Meeting

INVESTIGATIONS OF PHASE ADVANCE IMPACT

No.	Element	μ _x [2π]	μ _y [2π]	
1	TCP.C6L7.B1	47.18	43.57	
2	TCP.D6L7.B1	47.18	43.57	
3	TCP.C6R7.B2	48.01	44.35	
4	TCP.D6R7.B2	48.01	44.35	Tune:
5	ADTKH.A5L4.B1	24.16	22.26	$Q_x = 64.28$ $Q_y = 59.31$
6	ADTKV.A5R4.B1	24.20	22.32	Uy IIII
7	ADTKH.A5R4.B2	24.16	22.46	
8	ADTKV.A5L4.B2	24.11	22.43	

Phase advances between collimators and transverse dampers were calculated:

a) For beam 1 $\Delta \mu_{ADT \to TCP} = \mu_{TCP} - \mu_{ADT}$ (1)


b) For beam 2
$$\Delta \mu_{ADT \rightarrow TCP} = \mu_{ADT} + (Q-\mu)$$

$$\mathbf{u}_{\mathrm{ADT}} + (\mathbf{Q} - \boldsymbol{\mu}_{\mathrm{TCp}}) \tag{2}$$

Beam	Element	Horizontal [2π]	Vertical [2n]	Horizontal [deg]	Vertical [deg]
1	$ADT \rightarrow TCP$	23.02	21.25	7.2	90.0
2	$ADT \rightarrow TCP$	40.43	37.39	154.8	140.4

QTSWG Meeting

INVESTIGATIONS OF PHASE ADVANCE IMPACT

QTSWG Meeting

Agnieszka Priebe

PROPOSED QUENCH TEST LOCATIONS

$Phase \ advances \ between \ MQ \ and \ ADT:$

No.	MQ	φ _x [deg]	φ _y [deg]	Focusing plane	MQ	φ _x [deg]	$oldsymbol{\phi}_{\mathrm{y}}$ [deg]
1	MQ.20R5.B1	21.6	158.4	Vertical	MQ.20R5.B2	72.0	270.0
2	MQ.12L6.B2	165.6	136.8	Horizontal	MQ.11L6.B1	334.8	338.4
3	MQ.19L6.B2	136.8	79.2	Vertical	MQ.19L6.B1	316.8	345.6
4	MQ.27L6.B2	158.4	72.0	Vertical	MQ.27L6.B1	295.2	356.4

Constraints : $\phi_x > 0^\circ$, $\phi_v > 0^\circ$

a) horizontal plane:

 $\varphi_{\rm x} = (7.2 \pm 20.0)^{\circ} \text{ or } \varphi_{\rm x} = (154.8 \pm 20.0)^{\circ}$

b) vertical plane:

 $\varphi_{y} = (90.0 \pm 20.0)^{\circ} \text{ or } \varphi_{y} = (140.4 \pm 20.0)^{\circ}$

Beam	Element	Horizontal [2 1]	Vertical [2n]	Horizontal [deg]	Vertical [deg]
1	$ADT \rightarrow TCP$	23.02	21.25	7.2	90.0
2	$ADT \rightarrow TCP$	40.43	37.39	154.8	140.4

Assumptions: Beam 1 and Beam 2 should behave the same in distinguished planes. Planes considered independently from each other.

QTSWG Meeting

Agnieszka Priebe

A.Priebe, T.Baer, D.Valuch

Potential risks

- There is some finite probability that a bunch can miss the primary collimators (TCP), depending on the phase advance between the ADT and the TCP.
- 2) Particles can be stopped on one of the downstream collimators inducing a secondary particle shower.
- 3) In the worst case 1-2 magnets can quench with the probe beam at injection energy.
- 4) In order to minimize the risk we will start with the beam excitations at low gain and see if the losses occur in the location different from the expected one.
- 5) If the signal is high on the other collimators, we could retract them to a parking position.

A.Priebe, T.Baer, D.Valuch

<u>But ...</u>

- During the ADT fast losses test with symmetrical position of collimator jaws (26th March 2010) no significant losses appeared along the ring beside Octant 7 (TCLA.B6R7.B1).
- 2) Phase space coverage plots show that without TCP, the phase space is wellcovered by other collimators (except TCDQ) and losses with these intensities shouldn't be a problem. (T.Baer)
- 3) During "Quench Margin at Injection" (ATS-Note-2011-067 MD) there was no quench with 3.10¹⁰ protons at 450 GeV lost on TCLIB.

SUMMARY AND CONCLUSIONS

- 1. ADT can induce fast losses with a timescale of UFOs but with different temporal distribution.
- 2. ADT feedback sign flip method has turned out to be the most convenient for fast losses studies.
- 3. Asymmetrical position of collimator jaws will provide losses only on one side of the aperture (\rightarrow QT with 3-corrector bump scenario).
- 4. Two configurations of collimators were proposed.
- 5. Phase advance might be crucial for the decision of QT location.
- Presented MD plan is a part of preparation for the Quench Test (if given).
 ADT fast losses test with nominal energy (4 TeV) will be planned separately.

EDMS documents:

- A. Priebe, T. Baer, D. Valuch, "MD1-2012 ADT fast losses test at 450 GeV for UFO studies", EDMS No: 1212026 v.1

15

QTSWG Meeting

Agnieszka Priebe

 $4 \mathrm{\ May\ } 2012$

OPEN QUESTIONS

- 1. How can we set collimator jaws with 4 TeV beam? Safety issues?
- 2. Change of all collimators positions with single button?

THANK YOU FOR YOUR ATTENTION !

QUESTIONS?

COMMENTS?

SUGGESTIONS?

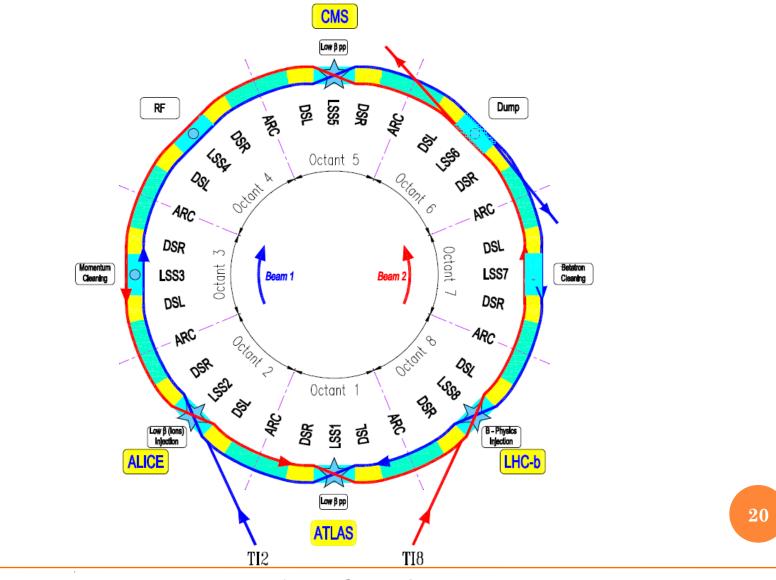
QTSWG Meeting

Agnieszka Priebe

 $4 \mathrm{\ May\ } 2012$

BACK-UP SLIDES

A.Priebe, T.Baer, D.Valuch

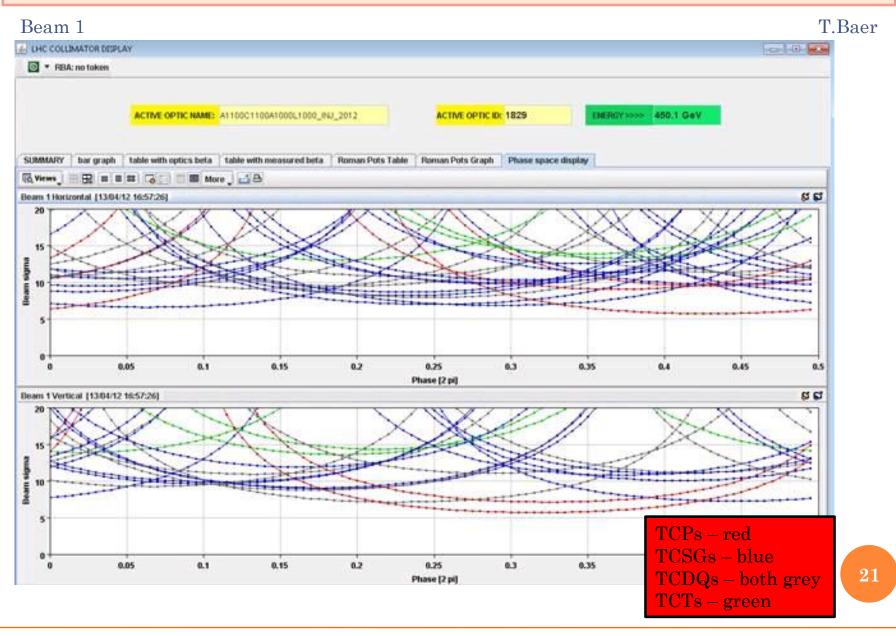

LHC elements where the changes will be implemented during the MD

No.	Beam	Plane	Collimator	ADT	
1	1	Horizontal	TCP.C6L7.B1	ADTKH.A5L4.B1	
2	1	Vertical	TCP.D6L7.B1	ADTKV.A5R4.B1	
3	2	Horizontal	TCP.C6R7.B2	ADTKH.A5R4.B2	
4	2	Vertical	TCP.D6R7.B2	ADTKV.A5L4.B2	

TCP stands for Primary Collimator for Cleaning (C - horizontal collimators, D - vertical collimators) and ADT - Transverse Damper.

LAYOUT

Schematic layout of the LHC. Beam 1 circulates clockwise and Beam 2 counter-clockwise. (LHC Design Report, Chapter 3)



QTSWG Meeting

Agnieszka Priebe

 $4 \mathrm{\ May\ } 2012$

PHASE SPACE COVERAGE PLOTS

QTSWG Meeting

Agnieszka Priebe

PHASE SPACE COVERAGE PLOTS

QTSWG Meeting

Agnieszka Priebe

ADT FAST LOSSES TEST, 26TH MARCH 2012

QTSWG Meeting

Agnieszka Priebe

ADT FAST LOSSES TEST, 26TH MARCH 2012

QTSWG Meeting

Agnieszka Priebe

 $4 \mathrm{\ May\ } 2012$