Physics searches with tau leptons at CMS

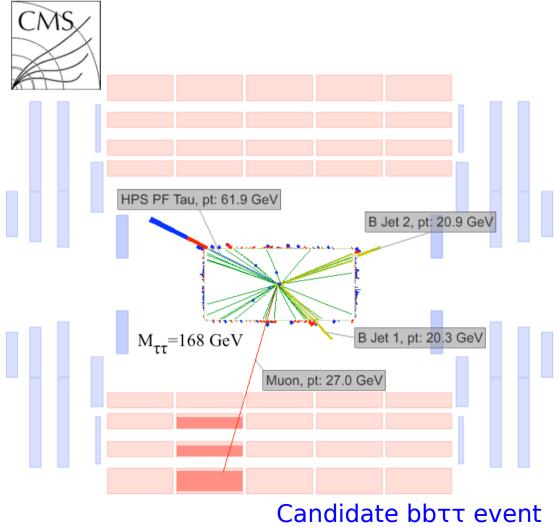
Artur Kalinowski*

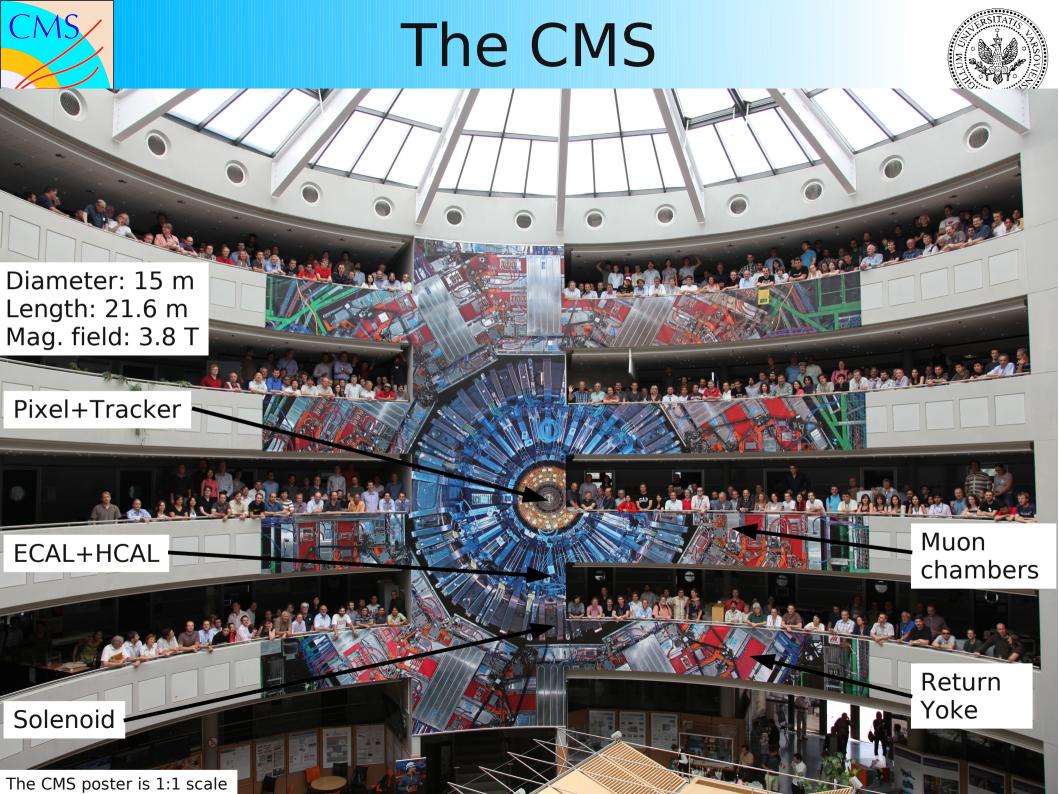
On behalf of CMS
Collaboration
(Faculty of Physics
University of Warsaw)

WORKSHOP tau lepton decays: hadronic currents from Belle BaBar data and LHC signatures

Kraków, May 17 2012

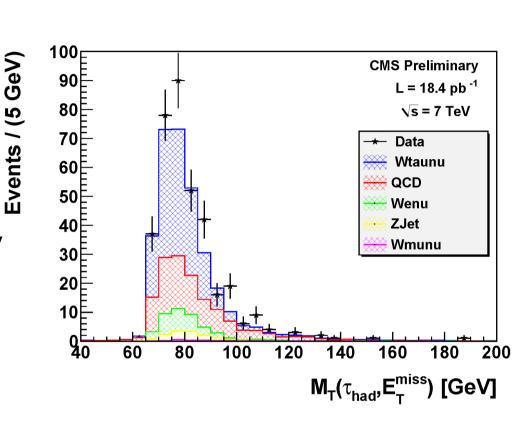
*AK is supported by the Homing Plus programme of Foundation for Polish Science, cofinanced from European Union Regional Development Fund



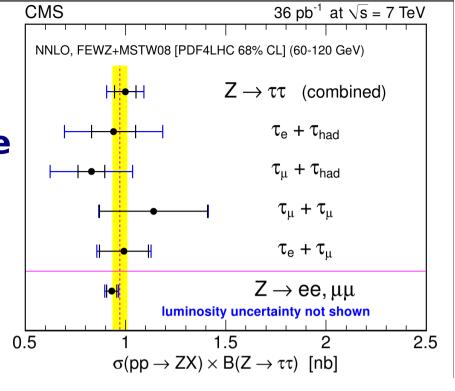

Outline

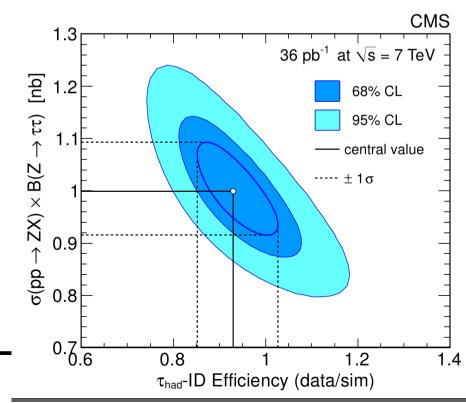
SM analyses with tau leptons: W, Z and top

- SM and MSSM Higgs searches
- BSM searches with tau leptons: SUSY
- Conclusions



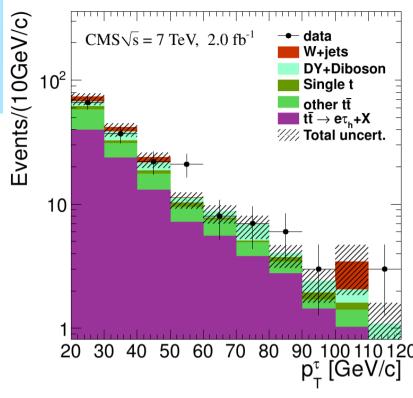
Early W→tv observation

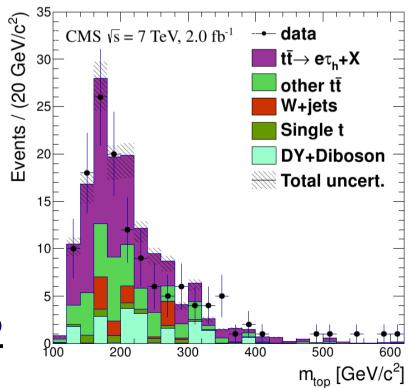



- Tau leptons used in CMS since early 2010 data, already with first 18 pb⁻¹
- Event selection:
 - HPS E_t^τ>30 GeV
 - leading τ track p_T>15 GeV
 - E_T^{miss}>35 GeV
 - Anti μ/e vetos
- QCD background estimated from DATA with control regions
- Results consistent with MC expectations

Z→ττ observation

- Z→ττ analysis crucial milestone towards H→ττ searches and important tool for data driven τ_h reconstruction efficiency
- Z→ττ→e-τ_{had},μ-τ_{had},e-μ, μμ channels analysed
- Good agreement with Z→ee/μμ cross section measurement
- Simultaneous likelihood fit of cross section and DATA/MC τ_h ID efficiency ratio shown very good agreement between DATA and MC on τ_h ID

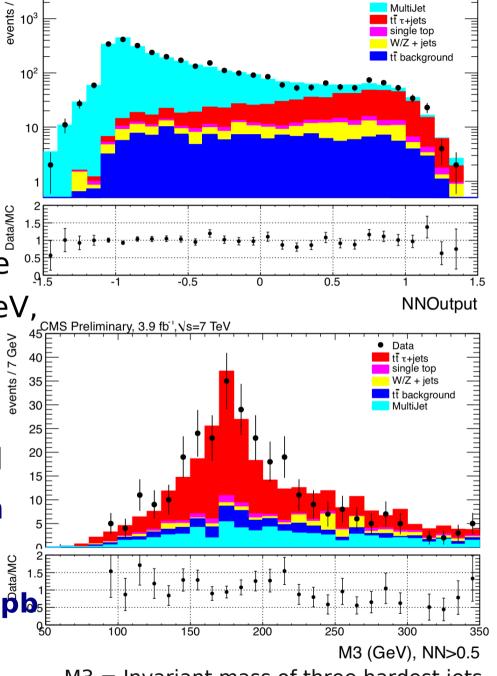




$$tt \rightarrow \tau_h + (e/\mu)$$

- light, charged Higgs decays could give observable contribution in this channel
- Event selection:
 - Isolated $e(\mu)$ with $p_{\tau}>35(30)$ GeV
 - $E_{T}^{miss} > 45(40) \text{ GeV}$
 - HPS E₊^τ>20 GeV
 - $e(\mu)$ τ opposite sign
 - E_Tmiss>35 GeV
 - At least two jets with $E_T>30(35)$ GeV, at least one b-tagged
- Measured σ_{tt} in agreement with SM

$$\sigma_{H} = 143\pm14(stat)\pm22(sys)\pm3(lumi)$$
 pb



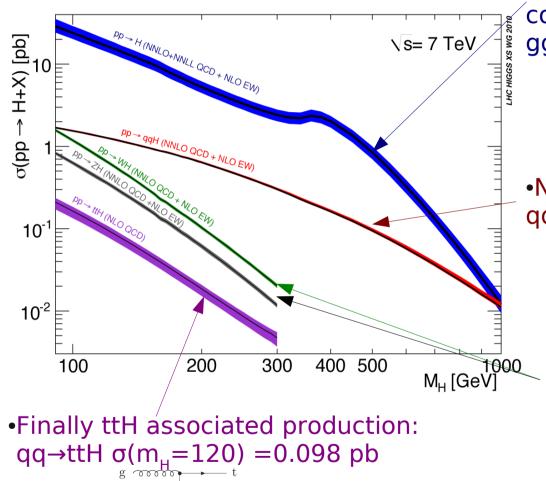
$tt \rightarrow \tau_h + jet$

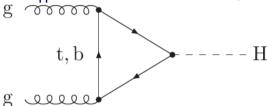
Event selection:

- -Dedicated trigger: three jets+tau,E_→>40 or 45 GeV
- -Offline: HPS tau, $E_T>45$ GeV, three jets $E_T>45$ GeV, fourth $E_T>20$ GeV, one b-tag
- -Veto on leptons, E_T^{miss}>20 GeV
- -Neural Network (TMVA MLP) used
- Measured σ_{tt} in agreement with SM and other CMS results

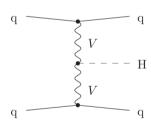
$$\sigma_{tt} = 156\pm12(stat)\pm33(sys)\pm3(lumi) \ \vec{p}b_{s}$$

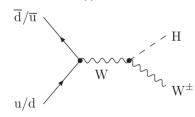
CMS Preliminary, 3.9 fb⁻¹, \s=7 TeV


M3 = Invariant mass of three hardest jets


SM Higgs production modes at the LHC

8

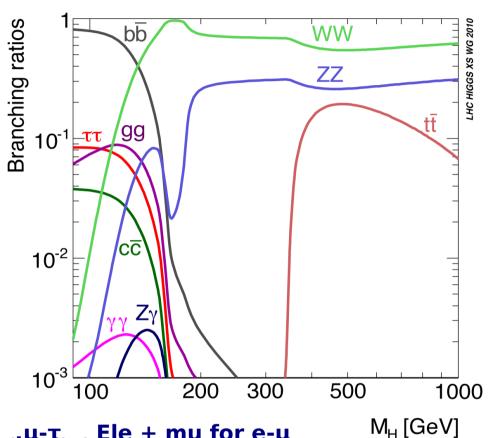



•Dominating production mode in pp collisions @7 TeV is gluon-gluon fusion $gg \rightarrow H$: $\sigma(m_H=120)=16.63$ pb

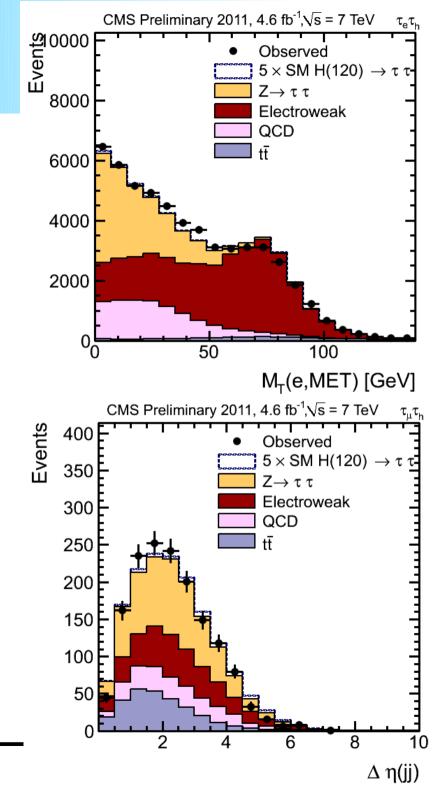
•Next is Vector Boson Fusion (VBF) $qq\rightarrow qqH$: $\sigma(m_H=120)=1.27$ pb

•then is VH associated production: $qq' \rightarrow WH \ \sigma(m_H = 120) = 0.66 \ pb \ and \\ qq \rightarrow ZH \ \sigma(m_H = 120) = 0.36 \ pb$

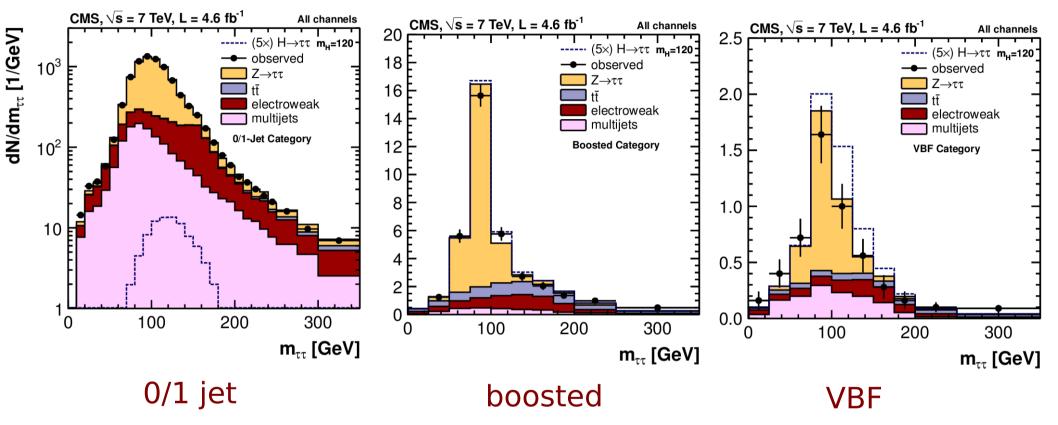
g o


H→tt searches at CMS

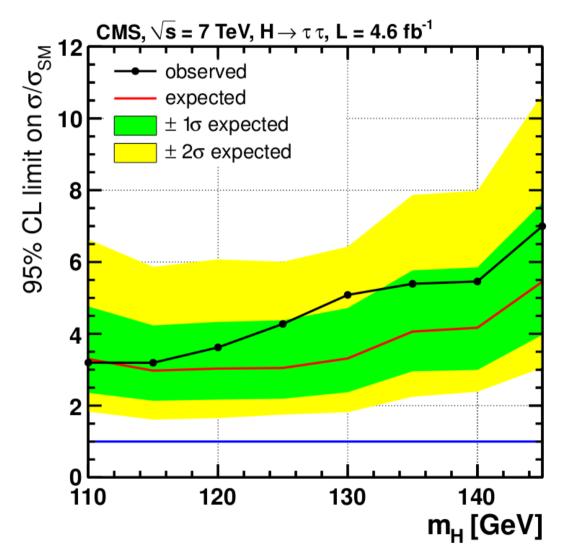
- Signal signatures studied in CMS:
 - $e-\tau_{had}$, $\mu-\tau_{had}$, $e-\mu$,
 - μμ (not covered here)
- **Irreducible background: Z**→**TT**
- Main reducible backgrounds:
 - QCD, tt, W+jets, Z→II, WW, WZ, ZZ


- Trigger: ele/mu + isolated tau for $e-\tau_{had}$, $\mu-\tau_{had}$. Ele + mu for $e-\mu$
- Lepton selection (e- τ_{had} , μ - τ_{had}):
 - •Mu: $p_{\tau}>17$ GeV/c, $|\eta|<2.1$, relative isol. , Ele: $p_{\tau}>20$ GeV/c, $|\eta|<2.1$, rel. isol.
 - •Hadronic Tau: HPS Tau, E_{τ} >20 GeV/c, $|\eta|$ <2.3, tau id, veto against e/ μ

Event selection


- Opposite charge of the lepton pair
- Veto additional isolated leptons
- m_T selection in e-τ_{had}, μ-τ_{had} (very effective against events with real W)
- P_{ζ} selection e- μ and MSSM analysis
- Selections related to production mode: events divided exclusively into three categories:
 - 0/1 jets with $E_T>30$ GeV and $E_T<120$ GeV
 - "boosted": one jet with E_T>120 GeV
 - "VBF": two jets, $E_T>30$ GeV, $\Delta \eta>4.0$, $\eta_1\cdot\eta_2<0$, $m_{jj}>400$ GeV, veto additional jets with $E_T>20$ GeV

ττ invariant mass



- •Full ττ invariant mass reconstructed using likelihood technique
- Significant sensitivity improvement with hard jet (boosted category) or VBF requirements

Exclusion limits for H→ττ

- •With 4.6 fb⁻¹ the expected exclusion limit in this channel is between $3.3 \cdot \sigma_{\text{SM}}$ and $5.45 \cdot \sigma_{\text{SM}}$
- No significant data excess above expected background is observed
- •The observed limit is between 3.2 $\cdot \sigma_{sm}$ and $7 \cdot \sigma_{sm}$

12

Higgs sector in MSSM

In the MSSM there are five Higgs bosons:

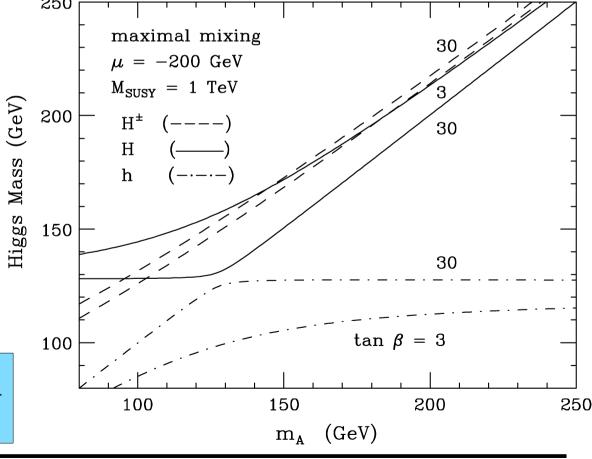
h, H, A, H[±]

At the tree level the Higgs sector is described

by two parameters:

$$tan\beta = \frac{v_1}{v_2}$$
 and m_A

$$m_{H,h}^2 = \frac{1}{2} [(m_A^2 + m_Z^2) \pm$$

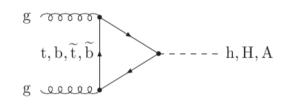

$$((m_A^2 + m_Z^2)^2 -$$

$$4m_z^2m_A^2 (\cos^2 2\beta))^{1/2}$$

$$m_{H+}^2 = m_A^2 + m_W^2$$

Large loop corrections:

$$m_h < m_Z \rightarrow m_h \sim 130 \, GeV$$

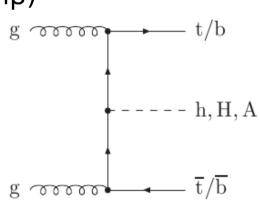


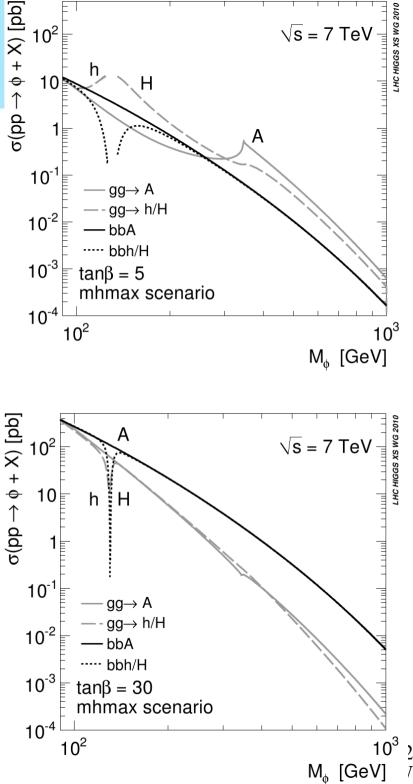
Production modes 2 102 102

 The main production modes at LHC are:

gg→φ

(dominant at low tanβ)

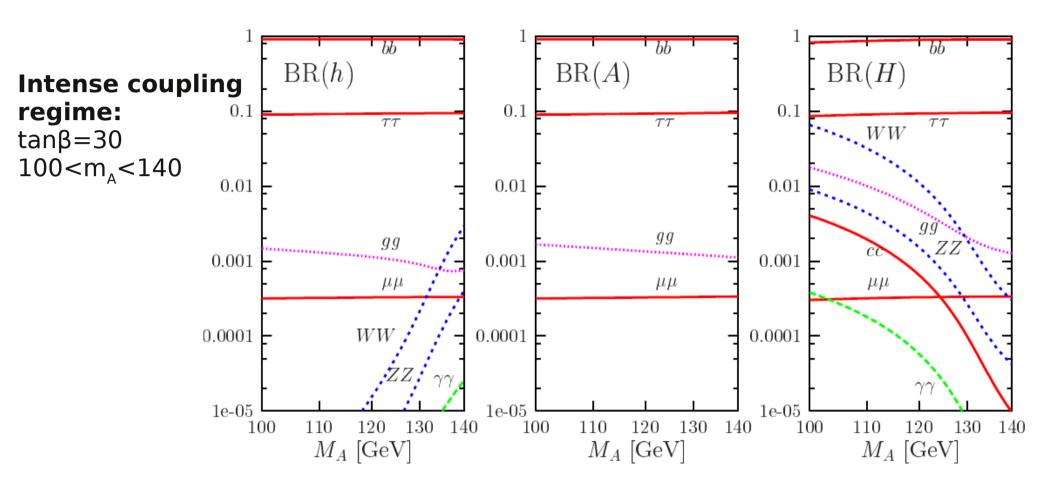



` h, H, A

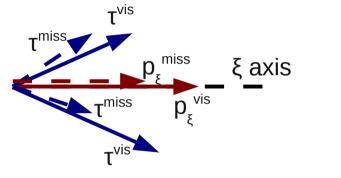
 $\overline{t}/\overline{b}$

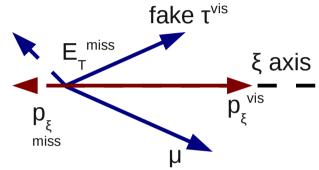
gg→bbφ

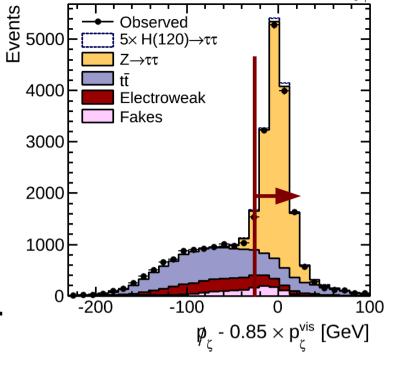
(dominant at high tanβ)



Decay modes

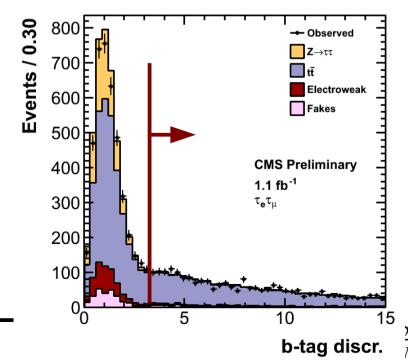





- depends on the point in the MSSM parameter space
- at high tan β BR($\Phi \rightarrow \tau \tau$)=10% \rightarrow the main search mode
- at high tanβ BR(Φ→bb)=90% → extremely difficult experimentally

Neutral Higgs event selection Most of the selections the same as in case of

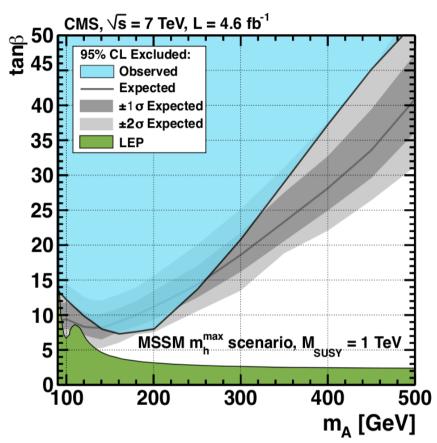
- **SM Higgs**
- P₇ selection for all search channels



CMS Preliminary 2011, 4.6 fb $^{-1}$, $\sqrt{s} = 7$ TeV $\tau_e \tau_u$

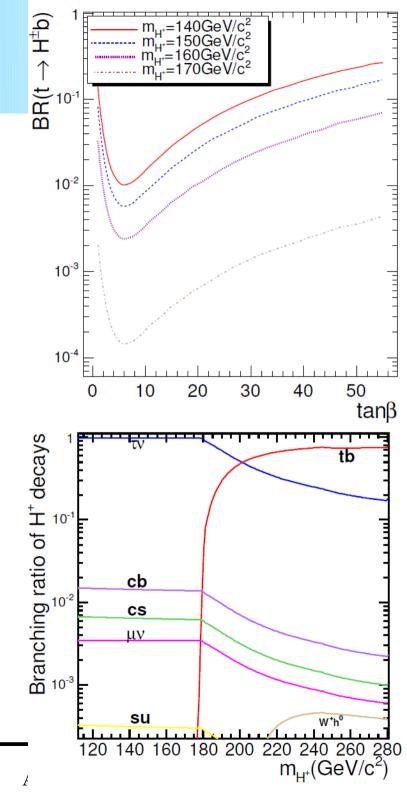
Selections related to production mode:

- at most 1 jest with E_T>30 GeV
- Selected events divided exclusively into two categories:


with/without b-tagged jet with E₊>20 GeV

MSSM exclusion limits

- No significant data excess above expected background is observed in neutra Higgs searches
- With 4.6 fb⁻¹ of data CMS has covered large fraction of (m_Δ,tanβ) parameter space

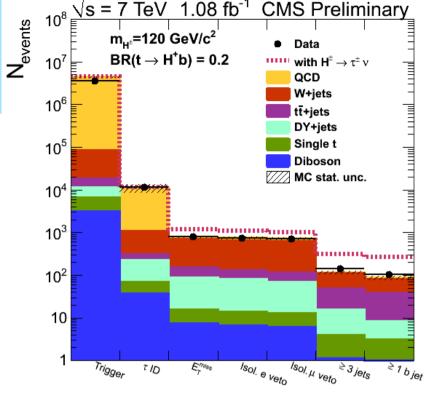


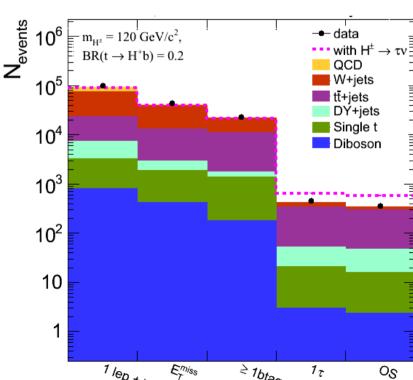
Search for H[±]

Two mass regimes:

- 1) $m_{H^{\mp}} < m_{t}$
 - mainly produced in top decays
 - main decay path:
 - Large tan β : $H^{\pm} \rightarrow \tau^{\pm} \nu$
 - $tan\beta < 1$: $H^{\pm} \rightarrow cs$
 - search strategy: estimate the BR(t→Hb), assuming 100% BR(H→τν), or BR(H→cs)
- 2) $m_{H^{\mp}} > m_{t}$
 - mainly produced in gluon-gluon fusion
 - main decay paths: $H^{\pm} \rightarrow tb$, $\tau^{\pm} v$

Main background:QCD, W/Z+jets, VV, tt, single t

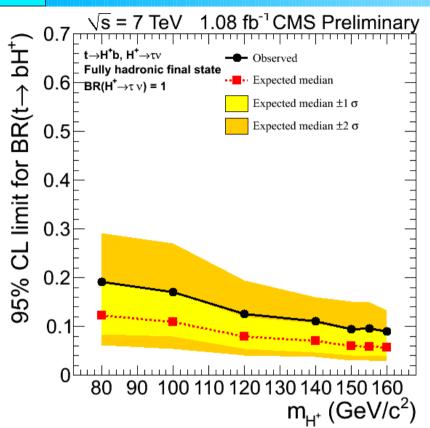

Charged Higgs selections

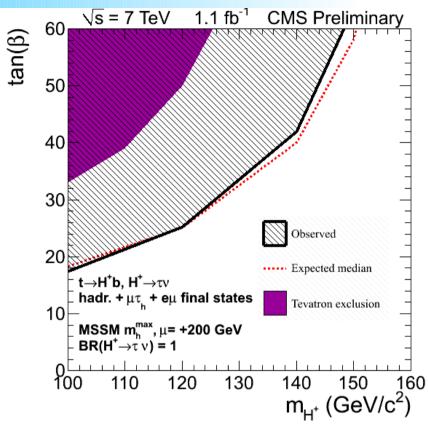

Fully hadronic event selection:

- HPS E_T^τ>40 GeV, only single prong, p_T leading tk. > 20 GeV
- At least three jets, E_T>40 GeV,
 one b-tagged
- No isolated μ /e with $p_T>15$ GeV, $E_T^{miss}>70$ GeV

μ+τ_h event selection:

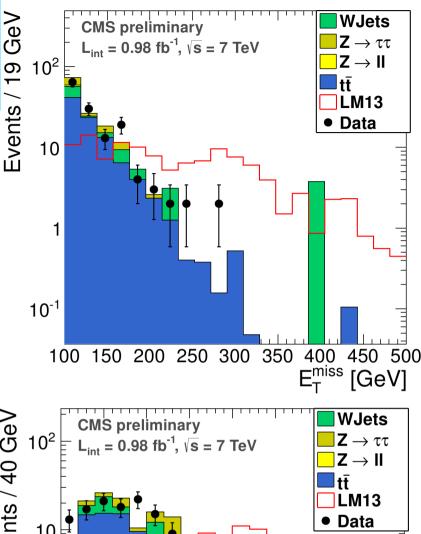
- HPS E_t^{τ} >20 GeV, p_T^{μ} >20 GeV,
- At least two jets, $E_T>30$ GeV, one b-tagged, $E_T^{miss}>40$ GeV

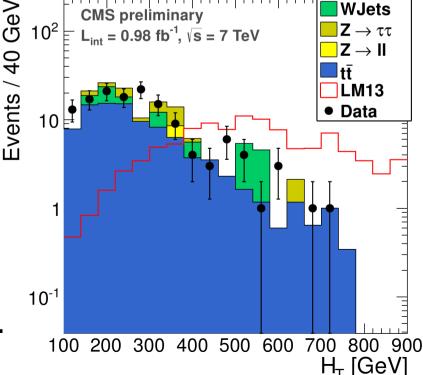




Exclusion limits

- No significant data excess above expected background is observed in charged Higgs searches
- Exclusion limits from charged Higgs searches are much weaker than in neutral mode, but already with 1.1 fb⁻¹ much better then existing limits

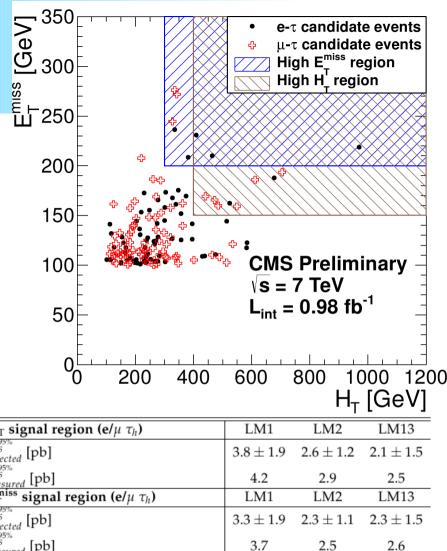

CMS/


SUSY searches with OS ττ

- couplings to third generation leptons can be enhanced leading to final states that predominantly contain tau leptons
- di-tau final states with τ_{had} are considered: $\mathbf{e} \tau_{had}$, $\mu \tau_{had}$, τ_{had}
- Fully leptonic final states included in generic di-lepton SUSY searches

Event selection:

- $p_T^{\tau,e/\mu} > 20 \text{ GeV (e/μ-τ_{had}), } p_T^{\tau} > 15$ GeV ($\tau_{had}^{} \tau_{had}^{}$)
- two jets, $E_T>30(100)$ GeV for e/μ τ_{had} $(\tau_{had}\tau_{had})$,
- E_{T}^{miss} , $H_{T}^{(miss)}$ cuts



SUSY results

- e/μ - τ_{had} channels: two signal regions defined: high E_{τ}^{miss} , high H_{τ}
- τ_{had} τ_{had} channel: separation between H_T^{miss} and next-to leading jet required to suppress QCD background
- Model independent upper limits on non SM contribution to signal regions set by the analyses, as no excess over SM expectation observed
- τ_(had) leptons used in many more SUSY analyses: same/opposite sign dileptons, multi lepton

high $H_{\rm T}$ signal region (e/ μ τ_h)	LM1	LM2	LM13
UL $\sigma_{expected}^{CL_{S}^{95\%}}$ [pb]	3.8 ± 1.9	2.6 ± 1.2	2.1 ± 1.5
UL $\sigma_{measured}^{C\dot{L}_{2}^{95\%}}$ [pb]	4.2	2.9	2.5
high $E_{ m T}^{ m miss}$ signal region (e/ μ $ au_h$)	LM1	LM2	LM13
UL $\sigma_{expected}^{CL_{S}^{SS}}$ [pb]	3.3 ± 1.9	2.3 ± 1.1	2.3 ± 1.5
UL $\sigma_{measured}^{CL_{S}^{95\%}}$ [pb]	3.7	2.5	2.6
$ au_h au_h$	LM1	LM2	LM13
UL $\sigma_{expected}^{CL_{gS\%}^{SS\%}}$ [pb]	3.9 ± 1.9	0.6 ± 0.3	1.8 ± 1.2
UL $\sigma_{measured}^{C\dot{L}_{S}^{95\%}}$ [pb]	4.2	0.7	2.0
high $H_{ m T}$ signal region (e/ μ $ au_h$) and $ au_h$ $ au_h$	LM1	LM2	LM13
UL $\sigma_{expected}^{CL_{s}^{95\%}}$ [pb]	2.5 ± 1.5	0.6 ± 0.3	1.2 ± 1.0
UL $\sigma_{measyred}^{CL_{s}^{95\%}}$ [pb]	2.9	0.7	1.5
high $E_{\rm T}^{\rm miss}$ signal region (e/ $\mu \tau_h$) and $\tau_h \tau_h$	LM1	LM2	LM13
UL $\sigma_{expected}^{CL_{g}^{S\%}}$ [pb]	2.4 ± 1.4	0.6 ± 0.3	1.2 ± 1.0
UL $\sigma_{measured}^{C\dot{L}_{S}^{25\%}}$ [pb]	2.8	0.6	1.5
σ_{model}^{NLO} [pb]	6.6	0.8	9.8

Conclusions

- The CMS experiment is performing analyses with τ's in final state since very early data taking periods
- Well known Standard Model processes with τ are studied as benchmarks
- Channels with τ 's are extensively used in the SM and SUSY Higgs boson searches
- SUSY analyses are using τ's in all decay modes and in complex multi jet, multi lepton environments

References

- CMS detector: JINST 3:S08004,2008 http://iopscience.iop.org/1748-0221/3/08/S08004
- Observation of W → τν production in pp Collisions at sqrt(s) = 7
 TeV
 - https://cdsweb.cern.ch/record/1344421
- Inclusive Z Cross Section via Decays to Tau Pairs
 J. High Energy Phys. 08 (2011) 117
- Measurement of the top quark pair production cross section in pp collisions at sqrt (s)= 7 TeV in dilepton final states containing a tau
 - arXiv:1203.6810
- Measurement of the ttbar production cross section in the tauplus-jets channel in pp collisions at sqrt(s)=7 TeV https://cdsweb.cern.ch/record/1446652
- Search for Neutral Higgs Bosons Decaying to Tau Pairs in pp Collisions at sqrt(s) = 7 TeV arXiv:1202.4083

References

- H+ -> Tau in Top quark decays https://cdsweb.cern.ch/record/1370056
- CMS Web page with details on Higgs searches: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG
- Search for Physics Beyond the Standard Model in Events with Opposite-sign Tau Pairs and Missing Energy http://cdsweb.cern.ch/record/1401920