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Near Detectors

a We have learned that near detectors are essential for
neutrino oscillation physics:

— We need measurement of neutrino flux with ~1% precision to
perform extrapolation to the Far Detector;

— We need measurement of charm production for neutrino factory
(one of the backgrounds to the oscillation signal at a NF);

— Cross-section measurements: DIS, QEL, RES scattering;
comparison of v, and v, cross-sections

1 Other measurements with Near Detector

— Fundamental electroweak and QCD physics (ie PDFs, sin?6W)
— Search for Non Standard Interactions (NSI) from taus
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A2 | Near Detector Baseline

2 Near Detector baseline (for Neutrino factory):

— High resolution section (SciFi tracker) for leptonic flux
measurement (baseline EUROnNu) — alternative was HiRes
straw tube tracker as in LBNE

— Mini-MIND detector for flux and muon measurement
— Vertex detector for charm/tau measurement at the front.
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2 Near Detector for Beta Beam or Super-beam: remove vertex
detector, include water targets as part of detector ?



Scintillating Fibre Tracker

1 Detector design:

20 tracker stations
Each station consists of 4 horizontal and 4 vertical layers of 1 mm

diameter scintillating fibres shifted with respect to each other
— 5 cm thick active absorber, divided into 5 slabs for more precise
measurement of recoil energy near the event vertex;

12 000 fibres per station (240 000 in total);

Air gaps are closed by a layer of scintillating bars;
Overall detector dimensions: 1.5 x 1.5 x 11 m3 (2.7 tons of polystyrene);
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Al IV Calorimeter

1 ECAL surrounding tracker now needed to determine
energy of electrons:

— No details of what this ECAL should be, but a lead-glass
calorimeter or Csl calorimeter would work

— Similar to LBNE HiRes detector: assume same energy
resolution

AE 6%
E A~E/GeV




Near Detector Location

a For Neutrino Factory: one detector per new 10 GeV decay
straight: ie. 2 detectors

E, =10 GeV 35 MeV
Straight section length = 469 m
Muon angular spread 0.5 mrad

5x1029 muon decays/per charge/
per year
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o Decay straight dip is 10° — two near detectors will be at

depth of ~100 m.

o For Beta Beams: one detector at end of straight
a For Super-beam: one detector at end of decay pipe
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Method for flux extraction

2  How to extract the neutrino factory flux from the
measurements of IMD and nue elastic scattering?

o Use channels with very small theoretical error in the cross-
sections and measure them at near detector:
— Inverse muon decay (Charged Current):
v,te v, +u Vet+t€ —V +u
— Elastic neutrino scattering:

* Neutral Current:
VM+G %Vu+e Vu+e %VM+9
» Interference Charged Current/Neutral Current:

v,+e —v_+e 176+e‘e179+e‘
1 These processes have cross-sections about 10-3 of total CC
cross-section but can still expect ~10° events in a near
detector at a neutrino factory

EUROnNu: 14th June 2012 7



Near Detector Flux

For 25 GeV NuFact v-e CC quasi-elastic scattering with
single muon in the final state:

Absolute cross-section calculated with enough confidence (0.1%)
Two processes of interest (available only for neutrinos from - decays):
Inverse Muon Decay (IMD) Muon production via annihilation

Cross-section ~1.7x10-4" E(GeV) cm? but threshold E, > 11 GeV
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Near Detector Flux

Added muon production by annihilation into GENIE, which will
be included in GENIE version 2.8.0 — service to community

Adds 25% to IMD signal ~ Rosen Matev
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Near Detector resolutions

N=58136

Probability
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Near Detector resolutions

2 Momentum resolution
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Near Detector IMD events

IMD signal extraction

Use linear extrapolation of event rates in region between cutl and cut2 to
estimate background under the signal peak.

1_41e3
— Bgr{2330)
— Al {5248)
1.2r — Linearfit [
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bgrrej&cut | overall | purity | all signal | signal events | p decays
eff eff events | events from fit

86 % 46 % | 81 % | 3498 | 2844 | 2880 +£59 | 2.3 x 10'°
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IMD background subtraction with anti-v,

Use 1t events to estimate background under the IMD peak. Number of
1 events is normalized to ;1= events by the average ratio between cutl

and cut2.
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— u* data ] ! — - Cut2(2.0)
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bgrrej&cut | overall | purity all signal | signal events | pu decays
eff eff events | events from fit

86 % 46 % | 81 % | 3498 | 2844 | 2820 £ 60 | 2.3 x 10%°
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Muon-neutrino electron scattering

2  Neutral current processes:

7 7
eN— e/y_

- _ — _ _ _
vu+e vu+e vu+e evu+e

NC _GFZS 1 ) ? 1 . 4 GZS 1 1 . 2 )

vo-(E) = - (—§+S'” Hw) t3sn O av’ﬁ_(E)= JFT g(—§+s,|n26?w) +sin® 6,

1 Cross-section 0.16x104" E(GeV) and 0.13x104" E(GeV) cm?
1 Accuracy of cross-section depends on sin?6,,
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Electron-neutrino electron scattering

............. .
/\ /\ e v eA
vV,+e —vVv,+e V,+€e —Vv, +e

G’ 2 G:’s[1(1 ’
o NY(E) = F S (—+S|n HW) +—sin*@ } o SMN(E) = £ —( +S|n29W) +sin” 6
e® T Vel T

2 Cross-section 0.96x104" E(GeV) and 0.40x104" E(GeV) cm?
a1 Accuracy of cross-section depends on sin?6,,
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v-e elastic scattering

ES signal extraction in ;#~ beam

Use linear extrapolation of event rates in region between cutl and cut2 to
estimate background under the signal peak.

le2

Bgr (7775)
All {10914) H
Linear fit
Cutl (2.4) H
Cut2 (8.0)
ES (3139) H

6 E, [rad®* MeV]
bgrrej&cut | overall | purity all signal | signal events | p decays
eff eff events | events from fit

A7 % 21 % | 58 % | 5202 | 2992 2760 = 72 | 2.3 x 10%°




v-e elastic scattering

ES signal extraction in u™ beam

Use linear extrapolation of event rates in region between cutl and cut2 to
estimate background under the signal peak.

le3

T
— Bgr {18511)
— Al (29516)
— Linear fit
— - Cutl (2.4)
— - Cut2 (8.0)
ES (11005) H

| 1 |

N -

0 4 6 8 10
62 E, [rad® MeV)
bgrrej&cut | overall | purity all signal | signal events | p decays
eff eff events | events from fit
83 % 37 % | 63 % | 16964 | 10607 | 10124 + 131 | 2.3 x 10%°

o With the SciFi tracker we can achieve ~1% uncertainty on the flux

normalisation by exploring IMD or v-e NC elastic scattering.
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Neutrino energy reconstruction

le3 ESm sample
T

o  Neutrino energy reconstruction: T —oo0r

2 2 - [s=0.339
b, =

[e)]

2Eime — mi —m;
2(me — By + prcos0))

(9]
T

34% |

N
T

w
T

Number of events

o If scattering angle is lepton angle

l l —01.0 -0.5 0.0 0.5 1.0
Neutrino energy relative difference (E,..—Ey;c)/Ervc

1  Since decay position not known, we do not know angle
o Instead, use:

N
T

=

cos 6] = cos 0, cos ) + sin 6, sin 0; cos ¢
2 Constrain possible values of:

/
Eq, 01, ¢ ;
by fitting likelihood function
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Reconstructed neutrino energy [GeV]

Neutrino energy

reconstruction

2  Improved neutrino energy reconstruction:
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2 Neutrino energy reconstruction
with this method

led4 ESm sample
1 1 1

o 13%

-0.4 -0.2 0.0 0.2 0.4
Neutrino energy relative difference (E,..—Ey)/Evc

improves from 34% to 13%
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Neutrino energy reconstruction

2 Final neutrino energy resolution for IMD and v-e scattering
iIncluding reconstructed momentum and angle:

45183 : D sample 5 5 1e3 ESm sample
40 xfg‘fgf Z—=_0.039
5—. 5 =0.204
3.5 2.0F
925 |
o kS
©2.0f ©
< 210}
2 1.5 e
1.or 0.5
0.5
002 —0.2 0.0 0.2 0.4 R -0.2 0.0 0.2 0.4
Neutrino energy relative difference (E,..—Fu)/Eye Neutrino energy relative difference (E,..—Eyc)/Evc

o  Allows us to obtain flux as a function of energy
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Fluxes from IMD and v-e scattering

1 Charged current processes:
v,te =V, +u

v, +e

o _
vV, +u

o We cannot distinguish between the two channels so we

measure N,(E) + N,(E):

= ¢v€ (E)Oéi— (E)

cC
N(E) =¢, (E)o (E)  N,(E)
u
| n beam Pol =0 |
¢ 2000 y e o
:E :_ [ —V“ _)Ve H
5 F |
= . —V,te SV,
Can only be used  40f | W”L} e Ovs
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above 11 GeV 1000} b ee— N,
for u- channel 800 le
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Neutrino electron scattering

2 Neutral current processes:
v,te —v +e v,+e —vVv +¢e
N3(E)=¢VM(E)O’5V;—(E) N4(E)=¢VM(E)G§;—(E)
a Interference neutral and charged current processes:
vV,+e —V, +e V,+€ —v_+€e
Ny(E)=¢, (E)o*“™ (E) N4(E)=¢, (E)o, ™ (E)

2  We can distinguish between each channel by the sign of the
muon decay that produces each of the neutrinos.
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Combination of all channels

a  So, if we consider the IMD and neutrino elastic scattering
channels together we obtain:
— For the NF decay above 11 GeV: U~ —> € +V, +V,

N\(E)+ Ny(E) = ¢, (E)0',_(E)+¢, (E)o' (E)
NJ(E)+ Ny(E) = ¢, (E)0, (E)+ ¢, (E)o " (E)

— We can extract the fluxes when we have IMD and elastic scattering:

o N+ N,) =0 (N3 +Ny)
¢VM(E) - 5 CC+NC 5CC

CeNCo ~0tC o™ .
Ve Ve v.e Ve
NC
0" (N,+N,)-0" (Ny+Ny)
@, (E) =— “
Ve, O'SCTNCO'CC = O,SC_O,NC_
V,e Ve vee Ve

— Below 11 GeV we cannot resolve since we only have N;+Ng
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d

3

Combination of all channels

For a 10 GeV neutrino factory we do not have IMD, so we
can only rely on the v-e channels:
— Forthe NF decay: U —>€ +V, +V,
N,(E)+Ny(E)=¢, (E)o, _(E)+¢, (E)o, ™ (E)
— Forthe NF decay: 1" ; e’ +M17M +V, e
Ny(E)+N,(E) = ¢, (E)o*" (E)+¢, (E)o'“_(E)
We cannot resolve fluxes : -
unambiguously, but we
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Flux extrapolation method

o Extrapolation near-to-far at Neutrino Factory:
— We extract P by fitting this formula: Andrew Laing

NFD = MFDPosc (‘913,5019 )MnOSCMI:I1DNND

— Where Mp=matrix of x-section plus response for numu at FD
— Myp=matrix of x-section plus response for nue at ND

— M, osc=matrix of FD nue flux extrapolated from ND nue flux
— Ngp=number of numu events in FD

— Nyp=number of nue events in ND
— P is the probability of oscillation and depends on 6,5 and d.p

a There is only one ND matrix that we need to invert: fits
converge for all values of 0,5 and dqp
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Flux extrapolation results

o Extrapolation near-to-far at Neutrino Factory:

— Using the FD spectrum formula: Nep = MepP. . (6,3,00p W06 ManN o
— Fit FD spectrum to predicted spectrum from ND:
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Flux extrapolation results

o Extrapolation near-to-far at Neutrino Factory:

— Using the FD spectrum formula: Nep = MepP. . (6,3,00p W06 ManN o
— Fit FD spectrum to predicted spectrum from ND:

X =22(NU =) Vi (N =)
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Flux extrapolation results

o Fitted vs true values of 6,5 and 6-p: o observed biases
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Conclusions

Method for extracting neutrino fluxes at NF relies on using
channels in which cross-sections are known very well
theoretically

Channels identified include:

— Inverse Muon Decay

— Muon-neutrino electron elastic scattering

— Electron-neutrino electron elastic scattering

Combination of IMD+neutrino elastic scattering works very
well for u- decay above IMD threshold (11 GeV)

For 10 GeV NF we need to fit combination of u* and u decay
and rely on fitting the shapes of spectra

Extrapolation to far detector from near detector can be
performed in an unbiased way with “matrix method”
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