Near Detector Flux Estimates

4th EURONu Plenary Meeting
Paris, 14 June 2012
Paul Soler (Glasgow)
on behalf of Sofia Group:
Roumen Tsenov, Rosen Matev, Yordan Karadzhov

Near Detectors

- We have learned that near detectors are essential for neutrino oscillation physics:
 - We need measurement of neutrino flux with ~1% precision to perform extrapolation to the Far Detector;
 - We need measurement of charm production for neutrino factory (one of the backgrounds to the oscillation signal at a NF);
 - Cross-section measurements: DIS, QEL, RES scattering; comparison of $\nu_{\rm u}$ and $\nu_{\rm e}$ cross-sections
- Other measurements with Near Detector
 - Fundamental electroweak and QCD physics (ie PDFs, sin²θW)
 - Search for Non Standard Interactions (NSI) from taus

Near Detector Baseline

- Near Detector baseline (for Neutrino factory):
 - High resolution section (SciFi tracker) for leptonic flux measurement (baseline EUROnu) – alternative was HiRes straw tube tracker as in LBNE
 - Mini-MIND detector for flux and muon measurement
 - Vertex detector for charm/tau measurement at the front.

Near Detector for Beta Beam or Super-beam: remove vertex detector, include water targets as part of detector

Scintillating Fibre Tracker

Detector design:

- 20 tracker stations
- Each station consists of 4 horizontal and 4 vertical layers of 1 mm diameter scintillating fibres shifted with respect to each other
- 5 cm thick active absorber, divided into 5 slabs for more precise measurement of recoil energy near the event vertex;
- 12 000 fibres per station (240 000 in total);
- Air gaps are closed by a layer of scintillating bars;
- Overall detector dimensions: $1.5 \times 1.5 \times 11 \text{ m}^3$ (2.7 tons of polystyrene);

EM Calorimeter

- ECAL surrounding tracker now needed to determine energy of electrons:
 - No details of what this ECAL should be, but a lead-glass calorimeter or CsI calorimeter would work
 - Similar to LBNE HiRes detector: assume same energy

resolution

$$\frac{\Delta E}{E} = \frac{6\%}{\sqrt{E/GeV}}$$

Near Detector Location

For Neutrino Factory: one detector per new 10 GeV decay straight: ie. 2 detectors

 E_{μ} = 10 GeV ±35 MeV Straight section length = 469 m Muon angular spread 0.5 mrad 5×10^{20} muon decays/per charge/ per year

- Decay straight dip is 10° → two near detectors will be at depth of ~100 m.
- For Beta Beams: one detector at end of straight
- For Super-beam: one detector at end of decay pipe

Method for flux extraction

- How to extract the neutrino factory flux from the measurements of IMD and nue elastic scattering?
- Use channels with very small theoretical error in the crosssections and measure them at near detector:
 - Inverse muon decay (Charged Current):

$$v_u + e^- \rightarrow v_e + \mu^- \qquad \overline{v}_e + e^- \rightarrow \overline{v}_\mu + \mu^-$$

- Elastic neutrino scattering:
 - Neutral Current:

$$v_{\mu} + e^{-} \rightarrow v_{\mu} + e^{-} \quad \overline{v}_{\mu} + e^{-} \rightarrow \overline{v}_{\mu} + e^{-}$$

Interference Charged Current/Neutral Current:

$$v_e + e^- \rightarrow v_e + e^- \qquad \overline{v}_e + e^- \rightarrow \overline{v}_e + e^-$$

□ These processes have cross-sections about 10⁻³ of total CC cross-section but can still expect ~10⁶ events in a near detector at a neutrino factory

Near Detector Flux

For 25 GeV NuFact v-e CC quasi-elastic scattering with single muon in the final state:

Absolute cross-section calculated with enough confidence (0.1%)

Two processes of interest (available only for neutrinos from μ decays):

Inverse Muon Decay (IMD)

Muon production via annihilation

Cross-section ~1.7x10⁻⁴¹ E(GeV) cm² but threshold $E_v > 11$ GeV

Near Detector Flux

Added muon production by annihilation into GENIE, which will be included in GENIE version 2.8.0 – service to community

Adds 25% to IMD signal

Rosen Matev

Near Detector resolutions

Angular resolution

Near Detector resolutions

Momentum resolution

Near Detector IMD events

IMD signal extraction

Use linear extrapolation of event rates in region between cut1 and cut2 to estimate background under the signal peak.

bgrrej&cut	overall	purity	all	signal	signal events	μ decays
eff	eff		events	events	from fit	
86 %	46 %	81 %	3498	2844	2880 ± 59	2.3×10^{19}

IMD background subtraction with anti- v_{μ}

Use μ^+ events to estimate background under the IMD peak. Number of μ^+ events is normalized to μ^- events by the average ratio between cut1 and cut2.

bgrrej&cut	overall	purity	all	signal	signal events	μ decays
eff	eff		events	events	from fit	
86 %	46 %	81 %	3498	2844	2820 ± 60	2.3×10^{19}

EUROnu: 14th June 2012

13

Muon-neutrino electron scattering

Neutral current processes:

- Cross-section 0.16x10⁻⁴¹ E(GeV) and 0.13x10⁻⁴¹ E(GeV) cm²
- ullet Accuracy of cross-section depends on $sin^2\theta_W$

Electron-neutrino electron scattering

Interference neutral and charged current processes:

$$v_e + e^- \rightarrow v_e + e^-$$

$$\overline{v}_e + e^- \rightarrow \overline{v}_e + e^-$$

$$\sigma_{v_{e}e^{-}}^{CC+NC}(E) = \frac{G_{F}^{2}s}{\pi} \left[\left(\frac{1}{2} + \sin^{2}\theta_{W} \right)^{2} + \frac{1}{3}\sin^{4}\theta_{W} \right] \sigma_{\overline{v_{e}}e^{-}}^{CC+NC}(E) = \frac{G_{F}^{2}s}{\pi} \left[\frac{1}{3} \left(\frac{1}{2} + \sin^{2}\theta_{W} \right)^{2} + \sin^{4}\theta_{W} \right]$$

- Cross-section 0.96x10⁻⁴¹ E(GeV) and 0.40x10⁻⁴¹ E(GeV) cm²
- ullet Accuracy of cross-section depends on $sin^2\theta_W$

v-e elastic scattering

ES signal extraction in μ^- beam

Use linear extrapolation of event rates in region between cut1 and cut2 to estimate background under the signal peak.

bgrrej&cut	overall	purity	all	signal	signal events	μ decays
eff	eff		events	events	from fit	
47 %	21 %	58 %	5202	2992	2760 ± 72	2.3×10^{19}

ν-e elastic scattering

ES signal extraction in μ^+ beam

Use linear extrapolation of event rates in region between cut1 and cut2 to estimate background under the signal peak.

bgrrej&cut	overall	purity	all	signal	signal events	μ decays
eff	eff		events	events	from fit	
83 %	37 %	63 %	16964	10607	10124 ± 131	2.3×10^{19}

■ With the SciFi tracker we can achieve ~1% uncertainty on the flux normalisation by exploring IMD or v-e NC elastic scattering.

Neutrino energy reconstruction

Neutrino energy reconstruction:

$$E_{\nu} = \frac{2E_{l}m_{e} - m_{l}^{2} - m_{e}^{2}}{2(m_{e} - E_{l} + p_{l}\cos\theta_{l}')}$$

If scattering angle is lepton angle

$$\theta_l' = \theta_l$$

- Since decay position not known, we do not know angle
- Instead, use:

$$\cos \theta_l' = \cos \theta_\nu \cos \theta_l + \sin \theta_\nu \sin \theta_l \cos \varphi_l$$

Constrain possible values of:

$$E_l, \theta_l, \varphi_l$$

by fitting likelihood function

Neutrino energy reconstruction

Improved neutrino energy reconstruction:

Neutrino energy reconstruction improves from 34% to 13% with this method

Neutrino energy reconstruction

Final neutrino energy resolution for IMD and v-e scattering including reconstructed momentum and angle:

Allows us to obtain flux as a function of energy

Fluxes from IMD and v-e scattering

Charged current processes:

$$v_{\mu} + e^{-} \rightarrow v_{e} + \mu^{-}$$
 $\overline{v}_{e} + e^{-} \rightarrow \overline{v}_{\mu} + \mu^{-}$

■ We cannot distinguish between the two channels so we measure $N_1(E) + N_2(E)$:

$$N_1(E) = \phi_{v_{\mu}}(E) \overline{\sigma_{v_{\mu}e^{-}}^{CC}}(E)$$
 $N_2(E) = \phi_{\overline{v}_e}(E) \sigma_{\overline{v}_ee^{-}}^{CC}(E)$

Can only be used for 25 GeV NF above 11 GeV for μ⁻ channel

Neutrino electron scattering

Neutral current processes:

$$\begin{aligned} v_{\mu} + e^{-} &\to v_{\mu} + e^{-} & \overline{v}_{\mu} + e^{-} &\to \overline{v}_{\mu} + e^{-} \\ N_{3}(E) &= \phi_{v_{\mu}}(E) \sigma_{v_{\mu}e^{-}}^{NC}(E) & N_{4}(E) &= \phi_{\overline{v}_{\mu}}(E) \sigma_{\overline{v}_{\mu}e^{-}}^{NC}(E) \end{aligned}$$

Interference neutral and charged current processes:

$$\begin{split} \nu_{e} + e^{-} &\to \nu_{e} + e^{-} \\ N_{5}(E) &= \phi_{\nu_{e}}(E)\sigma_{\nu_{e}e^{-}}^{CC+NC}(E) \end{split} \qquad N_{6}(E) = \phi_{\overline{\nu}_{e}}(E)\sigma_{\overline{\nu}_{e}e^{-}}^{CC+NC}(E) \end{split}$$

We can distinguish between each channel by the sign of the muon decay that produces each of the neutrinos.

Combination of all channels

- So, if we consider the IMD and neutrino elastic scattering channels together we obtain:
 - $\begin{array}{l} \text{For the NF decay above 11 GeV:} \ \mu^- \to e^- + \overline{\nu}_e + \nu_\mu \\ N_1(E) + N_2(E) = \phi_{\!\nu_\mu}(E) \sigma^{CC}_{\!\nu_\mu e^-}(E) + \phi_{\!\overline{\nu}_e}(E) \sigma^{CC}_{\!\overline{\nu}_e e^-}(E) \\ N_3(E) + N_6(E) = \phi_{\!\nu_\mu}(E) \sigma^{NC}_{\!\nu_\mu e^-}(E) + \phi_{\!\overline{\nu}_e}(E) \sigma^{CC+NC}_{\!\overline{\nu}_e e^-}(E) \end{array}$
 - We can extract the fluxes when we have IMD and elastic scattering:

$$\phi_{v_{\mu}}(E) = \frac{\sigma_{\bar{v}_{e}e^{-}}^{CC+NC}(N_{1}+N_{2}) - \sigma_{\bar{v}_{e}e^{-}}^{CC}(N_{3}+N_{6})}{\sigma_{\bar{v}_{e}e^{-}}^{CC+NC}\sigma_{v_{\mu}e^{-}}^{CC} - \sigma_{\bar{v}_{e}e^{-}}^{CC}\sigma_{v_{\mu}e^{-}}^{NC}}$$

$$\phi_{\bar{v}_{e}}(E) = \frac{\sigma_{v_{\mu}e^{-}}^{NC}(N_{1}+N_{2}) - \sigma_{v_{\mu}e^{-}}^{CC}(N_{3}+N_{6})}{\sigma_{\bar{v}_{e}e^{-}}^{CC+NC}\sigma_{v_{\mu}e^{-}}^{CC} - \sigma_{\bar{v}_{e}e^{-}}^{CC}\sigma_{v_{\mu}e^{-}}^{NC}}$$

Below 11 GeV we cannot resolve since we only have N₃+N₆

Combination of all channels

- For a 10 GeV neutrino factory we do not have IMD, so we can only rely on the ν -e channels:
 - For the NF decay: $\mu^- \to e^- + \overline{v}_e + v_\mu$ $N_3(E) + N_6(E) = \phi_{v_\mu}(E)\sigma_{v_\mu e^-}^{NC}(E) + \phi_{\overline{v}_e}(E)\sigma_{\overline{v}_e e^-}^{CC+NC}(E)$

- For the NF decay:
$$\mu^{+} \rightarrow e^{+} + \overline{v}_{\mu} + v_{e}$$

$$N_{5}(E) + N_{4}(E) = \phi_{v_{e}}(E)\sigma_{v_{e}e^{-}}^{CC+NC}(E) + \phi_{\overline{v}_{\mu}}(E)\sigma_{\overline{v}_{\mu}e^{-}}^{NC}(E)$$

We cannot resolve fluxes unambiguously, but we can fit for shape of spectrum with the constraints that:

$$\sum_{E} \phi_{v_{e}}(E) = \sum_{E} \phi_{\overline{v}_{\mu}}(E)$$

$$\sum_{E} \phi_{v_{\mu}}(E) = \sum_{E} \phi_{\overline{v}_{e}}(E)$$

Flux extrapolation method

- Extrapolation near-to-far at Neutrino Factory:
 - We extract P_{osc} by fitting this formula: Andrew Laing

$$N_{FD} = M_{FD}P_{osc}(\theta_{13}, \delta_{CP})M_{nOsc}M_{ND}^{-1}N_{ND}$$

- Where M_{FD}=matrix of x-section plus response for numu at FD
- M_{ND}=matrix of x-section plus response for nue at ND
- M_{nOsc}=matrix of FD nue flux extrapolated from ND nue flux
- N_{FD}=number of numu events in FD
- N_{ND}=number of nue events in ND
- P_{osc} is the probability of oscillation and depends on θ_{13} and δ_{CP}
- □ There is only one ND matrix that we need to invert: fits converge for all values of θ_{13} and δ_{CP}

Flux extrapolation results

- Extrapolation near-to-far at Neutrino Factory:
 - Using the FD spectrum formula: $N_{FD} = M_{FD}P_{osc}(\theta_{13}, \delta_{CP})M_{nOsc}M_{ND}^{-1}N_{ND}$
 - Fit FD spectrum to predicted spectrum from ND:

$$\chi^2 = \sum \sum (N_{ij} - n_{ij}) V_{ij}^{-1} (N_{ij} - n_{ij})^T$$

Fits using near-far projection method

Fits assuming standard flux error 1%

Flux extrapolation results

- Extrapolation near-to-far at Neutrino Factory:
 - Using the FD spectrum formula: $N_{FD} = M_{FD}P_{osc}(\theta_{13}, \delta_{CP})M_{nOsc}M_{ND}^{-1}N_{ND}$
 - Fit FD spectrum to predicted spectrum from ND:

$$\chi^{2} = \sum \sum (N_{ij} - n_{ij}) V_{ij}^{-1} (N_{ij} - n_{ij})^{T}$$

and δ with true values

Flux extrapolation results

Fitted vs true values of θ_{13} and δ_{CP} : no observed biases

- Method for extracting neutrino fluxes at NF relies on using channels in which cross-sections are known very well theoretically
- Channels identified include:
 - Inverse Muon Decay
 - Muon-neutrino electron elastic scattering
 - Electron-neutrino electron elastic scattering
- Combination of IMD+neutrino elastic scattering works very well for μ⁻ decay above IMD threshold (11 GeV)
- For 10 GeV NF we need to fit combination of μ^+ and μ^- decay and rely on fitting the shapes of spectra
- Extrapolation to far detector from near detector can be performed in an unbiased way with "matrix method"