

EUROnu meeting Paris 12-15 June

High-Q ion production
Status of Production Ring for 8B and 8Li
Optimization for neutrino flux

Elena Wildner, CERN

Outline

- Milestones & Deliverables ok!
- Status High-Q ion Production
- Optimizations for higher neutrino fluxes

High-Q ion production, 1

- The studies for the ⁸Li and ⁸B Production Ring as proposed by [C.Rubbia et al.] are studied within EUROnu
- A preliminary design is available.
- Optics studies done for the ⁷Li(d,p)⁸Li inverse kinematics, can be scaled to direct kinematics and B production
- The lattice requires tuning to maximize i-cooling efficiency (e.g. reduce beta at the target).
- 6D tracking tools (based on SixTrack) fully in place, predict what expected from i-cooling analytical estimations.
- The code SixTrack includes also the high order effects, e.g. chromaticity and second order dispersion, which are important.

High-Q ion production, 2

- Progresses in the feasibility studies
- The thickness (10¹⁹atoms/cm²) required for the gas-jet target in a vacuum environment is a major issue.
 - Existing target reach 10¹⁵atoms/cm²
- The direct kinematics approach with a liquid Lithium target looks very promising
- R&D for thin liquid-lithium film used as heavy-ions strippers, we could probably profit from...

The Production Ring (8B and 8Li)

Aachen Univ., GSI, CERN, ANL

⁷Li(d,p)⁸Li ⁶Li(³He,n)⁸B

> Production of 8B and 8Li C. Rubbia, EUROnu proposal

Gas jet target:

- too high density would be needed
- vacuum problems
- Direct production with liquid Li film targets

High-Q ion production, next?

- Direct kinematics feasibility:
 - Identify possible show-stoppers
 - Production rates
 - Realistic target thickness (and beam energy)
 - New collection device (or a separator, if feasible/preferred)
- Lattice optimization and injection design (in either direct/reverse)
- Beam-Target interaction w. Monte-Carlo codes:
 - Use correct physics inside tracking simulations (since we are at the limits of ionization cooling capabilities...)
 - Integration of FLUKA in SixTrack (with V. Vlachoudis, D. Sinuela, CERN)
- We maybe still want to look at other types of rings:
 - Existing CERN rings
 - FFAGs

High-Q ions, other rings?

Use existing CERN rings

- e.g. AD, LEIR or ELENA(proposed)
- stochastic and/or electron cooling available
- larger circumference, less constrains?
- reduce costings, have sinergies w. other CERN projects

FFAGs

- see Y.Mori, NIM A 562 (2006) 591; K.Okabe et al, IPAC10, EPAC08,...
- Proton FFAG with internal Be target to produce neutron for BNCT.
- ERIT: Emittance Recovery Internal Target
- Large acceptance for both horiz.(10³ mm mrad) and longit.(10%)
- no need of (dp/p) cooling
- Scaling FFAG (Q'~0)
- They have a running machine! With similar parameters to ours

- Do we need higher fluxes, and how much?
- Where are the limitations?
 - Production
 - Acceleration, losses
 - Injection, Decay Ring (intrinsic, longitudinal merging)
 - Storage
 - Radiological issues
 - Shielding of equipment

- Do we need higher fluxes, and how much?
 - To be discussed by WP6
 - What do we gain by putting more ions?
 - What do we loose by relaxing the SF?
 - Much has already been done
 - WP4 has been able to find directions of research

CPV dependence on SF (Fréjus option)

SF 2% seems sufficient for larger $\sin^2 2\theta_{13}$ (0.6% used up till now) Permits higher fluxes and reach will increase (needs optimization)

Production:

- The main focus of EUROnu WP4 is isotope production
- 8B and 8Li production is the central research
- Difficult technical obstacles for 8B and 8Li
- Switch of focus: 18Ne (6He already in good shape)
- Good progress
- Production of 6He and 18Ne is our baseline

- Acceleration, losses:
 - In all machines we have intense ion beams
 - We do not yet know the limits of what is possible
 - What can be improved in the machines? Cost?

Intensity Limits: PS & SPS

- Tune scans in PS
- ◆ 6He will survive, 18Ne needs resonance compensation (PS)
- Beam stability in the PS and the SPS still needs studies

European Strategy for Neutrino Oscillation Physics - II, Elena

- Injection, Decay Ring (intrinsic, longitudinal merging)
 - To what extent can we profit of relaxed duty factors?
 - Study of all machines, RF Bunching...
 - To what extent can this help the acceleration?

- Storage
 - How much can we store in the Decay Ring?
 - Magnets, dumps, shielding

- Radiological issues
 - So far no show stoppers have been seen

Integration: PS, radiation studies (1)

S. Damjanovic

DGS-RP, CERN

2012-15-05 Wildner 16

Ambient Dose-Eq Rate [uSv/h] above the Ground Level

Dose Rates extracted assuming the same relative beam loss as of 10/03/2010 when 6µSy/h was measured by PAXS51

values at PAXS51:

Ne-18, Ek=873.3 MeV/n: 17 μ Sv/h He-6, Ek=382.3 MeV/n: 3 μ Sv/h p, E_k=2 GeV: 49 μ Sv/h p, E_k=1.4 GeV: 21 μ Sv/h for the full proton beam intensities of 8×10¹²p/s (E_k=1.4 GeV) and 1.1×10¹³p/s (E_k=2 GeV) Dose Rates highest for the proton beams than for the beta beams.

Dose Rates higher by factors of 2.3, 3, 16 for p E_x=2 GeV beam losses compared to H-proton E_x=1.4 GeV, Ne-18 and He-6, resp.

11

2012-15-05

- Shielding of equipment
 - Needs studies in all machines
 - No evident show stoppers have been found

The CERN Beta Beam, now

Decay Ring: Bp ~ 500 Tm, B = ~7 T, C = ~6900 m, L_{ss} = ~2500 m, γ = 100, all ions

Production of β-active isotopes

Aim ⁶He and ¹⁸Ne: 2 10¹³/s Targets below MWatt is a considerable advantage!

Isotope	⁶ He	¹⁸ Ne	⁸ Li	8 B
Prod.	ISOL(n)	ISOL	P-Ring	P-Ring
Beam	SPL(p)	Linac4(p)	d	³ He
I [mA]	0.07	6	0.160	0.160
E [MeV]	2000	160	25	25
P[kW]	140	960	4	4
Target	W/BeO	23 Na, 19 F	$^7\mathrm{Li}$	$^6\mathrm{Li}$
r [10 ¹³ /s]	5	0.9	0.1	0.08

⁶He production exp. T. Stora, CERN-2010-003, pp. 110-117

Templates PRSTAB (Latex)

I recommend you download and unzip this: https://authors.aps.org/revtex4/revtex4-1.zip

Also see

https://authors.aps.org/

https://authors.aps.org/tips.html

for other related information.