



# Horn studies for the CERN to Fréjus neutrino Super Beam

Nikolas Vassilopoulos on behalf of WP2, IPHC, Strasbourg







### Horn evolution

evolution of the horn shape after many studies:

details in WP2 notes @ http://www.euronu.org/

- triangle shape (van der Meer) with target inside the horn : in general best configuration for low energy beam
- triangle with target integrated to the inner conductor: very good physics results but high energy deposition and stresses on the conductors
- forward-closed shape with target integrated to the inner conductor: best physics results, best rejection of wrong sign mesons but high energy deposition and stresses
- forward-closed shape with no-integrated target: best compromise between physics and reliability
- 4-horn/target system to accommodate the MW power scale





#### Horn shape and SuperBeam geometrical Optimization I

# Horn geometrical model à la MiniBoone ("forward closed") GEANT4 based simulation

large acceptance for forward produced particles

This shape is well suited for long targets

A. Longhin

Good suppression of wrong charge pion dangerous in "-" focusing mode due to  $v_e$  from  $\pi^+ \to \mu^+ \to e^+ \, v_e \, \overline{v}_\mu$  and  $K^+ \to \pi^0 \, e^+ \, v_e$ 

Third EUROnu annual meeting, RA

EUROnu-WP2 note 09

parameterise the horn and the other beam elements as decay tunnel dimensions, etc...

- ✓ parameters allowed to vary independently
- $\checkmark$  minimize the  $\delta_{cp}$ -averaged 99%CL sensitivity limit on  $\sin^2 2\theta_{13}$

studies by A. Longhin, C. Bobeth

#### **Optimization strategy**

- Parametric model of magnetic horns
- Random sampling of parameters
- Ranking of configurations based on achievable  $\theta_{13}$  limits

Figure of merit:  $\lambda =$ 

 $\theta_{13}$  sensitivity limit at 99% C.L. averaged over the  $\delta_{CR}$  phase

$$\lambda = \frac{10^3}{2\pi} \int_0^{2\pi} \lambda_{99}(\delta_{CP}) \, d\delta_{CP}$$

We want as low as possible λ

 Broad sampling of the (many) parameters to identify the most relevant variables. Then restrict the ranges of variation and iterate.

Third EUROnu annual meeting, RAL 19 Jan 2

#### Horn Shape and SuperBeam geometrical Optimization II

#### **Broad scan** Allow parameters to vary independently Limit value $L_{max}$ 250 cm80 cm $R_{max}$ $R_{min}$ 1.2 cm Interval λ distribution Parameter $[50, L_{max}]$ cm With 2 y neutrino + 8 y anti-neutrino running $L_2, L_3, L_4$ $[1, L_{max}]$ cm Configurations with $\lambda < 1.05$ $L_5$ [1, 15] cm R, $R_1$ , $R_2$ $[R_{min}, R_{max}]$ $R_0$ $[R_{min}, 4]$ cm . 3000 configurations x 2 horn polarities · 105 pot for each configuration -30, 0 cm $z_{tar}$ [35, 45] m $L_{tun}$ [1.8, 2.2] m $r_{tun}$ Value Parameter 0.78 m $L_{tar}$ 1.5 cm $r_{tar}$ i300 kA 3 mm sL\_\_\_ and R\_\_\_: keep the horns small to allow for the 4-horns in parallel to fit 5.08 cmr

| Parameters                | value [mm]               |  |
|---------------------------|--------------------------|--|
| $L_1, L_2, L_3, L_4, L_5$ | 589, 468, 603, 475, 10.8 |  |
| $t_1, t_2, t_3, t_4$      | 3, 3, 3, 3               |  |
| $r_1, r_2$                | 108                      |  |
| $r_3$                     | 50.8                     |  |
| $R^{tg}$                  | 12                       |  |
| $L^{tg}$                  | 780                      |  |
| $z^{tg}$                  | 68                       |  |
| $R_2, R_3$                | 191, 359                 |  |
| $R_1$ combined            | 12                       |  |
| $R_1$ separate            | 30                       |  |



fix & restrict parameters then reiterate for best horn parameters & SuperBeam geometry





#### **Horn Stress Studies**



- ✓ Al 6061 T6 alloy good trade off between mechanical strength, resistance to corrosion, electrical conductivity and cost
- ✓ horn thickness as small as possible: best physics, limit energy deposition from secondary particles but thick enough to sustain dynamic stress
- horn stress and deformation
  - ✓ static mechanical model, thermal dilatation
  - ✓ magnetic pressure pulse, dynamic displacement
  - ✓ COMSOL, ANSYS software
- cooling





# Energy Deposition from secondary particles @1.3 MW



#### **Stress Analysis**

- Thermo-mechanical stresses:
  - ✓ secondary particles energy deposition and joule losses
  - $\checkmark$  T=60ms, (worst scenario, 1horn failed) ,τ<sub>01</sub>=100μs, electrical model: I<sub>0</sub> = 350kA, f=5kHz, I<sub>rms</sub>=10.1kA,







stress minimized when horn has uniform temperature



- G. Gaudiot, B. Lepers,
- F. Osswald, V. Zeter/IPHC,
- P. Cupial, M. Kozien, L. Lacny,
- B. Skoczen et al. /Cracow Univ. of Tech.

#### Stress due to thermal dilatation and magnetic pressure

- displacements and stress plots just before and on the peak
  - ✓ stress on the corner and convex region
  - ✓ stress on the upstream inner due to pulse
  - √ uniform temperature minimizes stress
- > modal analysis, eigenfrequencies
  - $\checkmark$  f = {63.3, 63.7, 88.3, 138.1, 138.2, 144.2} Hz





#### Horn cooling





#### cooling system

- planar and/or elliptical water jets
- > 30 jets/horn, 5 systems of 6-jets longitudinally distributed every 60°
- flow rate between 60-120l/min, h cooling coefficient 1-7 kW/(m²K)
- longitudinal repartition of the jets follows the energy density deposition
- $h_{corner}$ ,  $h_{horn}$ ,  $h_{inner}$ ,  $h_{convex}$  = {3.8, 1, 6.5, 0.1} kW/(m<sup>2</sup>K) for  $T_{Al-max}$  = 60  $^{0}$ C

### horn lifetime

#### Horn response under pulse magnetic forces

SINGLE PULSE with static thermal stress SVM=102.5 MPa and maximal magnetic stress SMAX=41 MPa — estimated life time

| S-N curve - | Life time [s] |             |                  |
|-------------|---------------|-------------|------------------|
| probability | Rayleigh      | Dirlik      | Benasciutti-Tovo |
| 95%         | 2.7076e+007   | 8.6147e+007 | 7.9627e+007      |
| 50%         | 6.0195e+006   | 1.8589e+007 | 1.7026e+007      |
| 5%          | 2.1816e+006   | 6.5918e+006 | 6.0132e+006      |



highly conservative

NUMBER OF PULSES

Dirlik model

f = 12.5 Hz

1.25 10<sup>8</sup> pulses = 200 days = 1 year

M.S.Kozień Fourth EUROnu Annual Meeting

Fourth EUROnu Annual Meeting, June 12-15, 2012, APC, Paris

A.Niesłony

12/13

#### **Power Supply**



P. Poussot, J. Wurtz/IPHC

## <u>conclusions</u>

- > Al 6061 T6 alloy for radiation, reliability and cost
- convex shape defined for optimum physics
- ➤ low stress on inner conductor when uniform cooling is applied < 30 MPa
- ➤ horn lifetime > 10<sup>8</sup> cycles (1 year) highly conservative
- power supply & cooling R&D needed

4-horn system for power accommodation



| Parameters                | value [mm]               |  |  |
|---------------------------|--------------------------|--|--|
| $L_1, L_2, L_3, L_4, L_5$ | 589, 468, 603, 475, 10.8 |  |  |
| $t_1,t_2,t_3,t_4$         | 3, 10, 3, 10             |  |  |
| $r_1, r_2$                | 108                      |  |  |
| $r_3$                     | 50.8                     |  |  |
| $R^{tg}$                  | 12                       |  |  |
| $L^{tg}$                  | 780                      |  |  |
| $z^{tg}$                  | 68                       |  |  |
| $R_2, R_3, R_4$           | 191, 359, 272            |  |  |
| $R_1$ non integrated      | 30                       |  |  |

Table 1: Horn geometric parameters.

| Parameters                      | Range   | Reference value       |
|---------------------------------|---------|-----------------------|
| Beam Power $P_{beam}[MW]$       | -       | 4                     |
| Energy per pulse[kJ]            | -       | 80                    |
| Kinetic energy of protons[GeV]  |         | 4.5                   |
| Number of pulse in 1s           |         | 50                    |
| Number of protons per pulse     |         | $1.11 \times 10^{14}$ |
| Number of bunch per pulse       |         | 6                     |
| Number of protons per bunch     |         | $1.85 \times 10^{13}$ |
| bunch duration[ns]              |         | 120                   |
| Energy per bunch[kJ]            |         | 13.33                 |
| Power for each bunch[GW]        |         | 111                   |
| repetition rate per horn[Hz]    | -       | 12.5(16.6)            |
| Power per horn[MW]              | 11.3    | 1.4                   |
| Peak Current $I_0$ [kA]         | 300 350 | 350                   |
| Beam width $\sigma$ [mm]        | -       | 4                     |
| Current frequency per horn [Hz] | -       | 12.5 (16.6)           |
|                                 |         |                       |

Table 2: Beam and horn parameters.