Impact of Beam-Beam Effects on Precision Luminosity Determination at the LHC

W. Kozanecki (CEA Saclay), with W. Herr & T. Pieloni (CERN)

- **Introduction**: luminosity-determination strategy & precision goals
- **Beam-beam effects**
- **Do’s & don’t ‘s: lessons learnt**
- **Do’s & don’t ‘s: wish list for 2015 (& somewhat beyond)**
 - all known issues – not just those beam-beam related
- **In conclusion...**
Introduction: luminosity-determination strategy and precision goals

Physics running

- Max. pile-up parameter (2012): $\mu_{pk} \leq 35$ inel. pp collisions/BX

L determination

- absolute calibration
 - van der Meer scans, $\mu_{pk} \sim 0.5 - 5$
- high rate effects & μ-dependence: physics conditions
 - non-invasive monitoring
 - μ-scan: msre relative μ-dep. at one point in time
- long-term stability: physics conditions
 - non-invasive monitoring

<table>
<thead>
<tr>
<th>Uncertainty Source</th>
<th>$\delta L / L$</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunch Population Product</td>
<td></td>
<td>3.1%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Other vdM</td>
<td></td>
<td>3.1%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Calibration Uncertainties</td>
<td></td>
<td>1.3%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Afterglow Correction</td>
<td></td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>BCM Stability</td>
<td></td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Long-Term Consistency</td>
<td></td>
<td>0.5%</td>
<td>0.7%</td>
</tr>
<tr>
<td>μ Dependence</td>
<td></td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3.4%</td>
<td>1.8%</td>
</tr>
</tbody>
</table>

ATLAS

Note: This document is for internal circulation only.
Luminosity Basics

- μ: mean number of inelastic interactions per BX
- $\mu_{\text{vis}} = \epsilon \mu$: Mean number of interactions per BX seen by detector
- Total inelastic rate: $\mathcal{L} = \frac{\mu n_b f_r}{\sigma_{inel}}$
- Inelastic cross section (unknown)
- Cross section seen by detector: $\frac{\mu_{\text{vis}} n_b f_r}{\sigma_{\text{vis}}}$

σ_{vis} is determined in dedicated fills based on beam parameters.
Calibrating σ_{vis} in van der Meer (aka “vernier”) Scans

- Luminosity in terms of beam densities ρ_1 and ρ_2:
 \[
 \mathcal{L} = n_b f_r n_1 n_2 \int \rho_1(x, y) \rho_2(x, y) \, dx \, dy
 \]

- Under the condition that the integral factorises into uncorrelated x & y components:
 \[
 \mathcal{L} = \frac{n_b f_r n_1 n_2}{2\pi \sum x \sum y}
 \]

- Detector independent
- Detector dependent

Measured by beam instrumentation

Measured in vdM scan

Detector independent

LHC fill: 2520
\[\sqrt{s} = 8\text{TeV}\]
Colliding beams exert strong force on each other

- optics changes due to (de)focusing force
 - for head-on collisions
 - small amplitude: linear force (~ quad)
 - loss or gain in L_{peak}
 - but no L-calibration bias
 - during vdM scan
 - large amplitude: non-linear force
 - distorts scan curve \Rightarrow L-calibration error?

Focusing by b-b interaction $\Delta k(s)$ leads to phase change $\Delta \mu$ and "optical error" $\Delta \beta(s_0)$

- In perturbation theory:
 $$\Delta \beta(s_0) = -\frac{\beta(s_0)}{2 \sin(2\pi Q)} \int_{s_1+C}^{s_1+C} \beta(s) \Delta k(s) \cos [2(\mu(s) - \mu(s_0)) - 2\pi Q] \, ds$$
 - s and s_0 are interaction points (IP)
 - must take into account all potential IPs
 - special case: $s = s_0$ (1 IP), head-on
 $$\frac{\beta^*}{\beta_0^*} = \frac{\sin(2\pi Q)}{\sin(2\pi (Q + \Delta Q))} = \frac{1}{\sqrt{1 + 4\pi \xi \cot(2\pi Q) - 4\pi^2 \xi^2}}$$

Optics code required

- If optics change \Rightarrow beam-beam force changes \Rightarrow optics change: self-consistent calculation needed
- Take into account all IP’s
- Build beam-beam element \Rightarrow MADX
W. Herr

Dynamic β: head-on ("static") case

- Simulation parameters:
 May’11 vdM scans [typ. physics]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_b (TeV)</td>
<td>3.5</td>
</tr>
<tr>
<td>N_p (10^{11})</td>
<td>0.85 [1.5]</td>
</tr>
<tr>
<td>ε_N (µm-rad)</td>
<td>4 [2.0-2.5]</td>
</tr>
<tr>
<td>β^*_0 (m)</td>
<td>1.5</td>
</tr>
<tr>
<td>Q_x/Q_y</td>
<td>0.31 / 0.32</td>
</tr>
</tbody>
</table>

- Observations
 - Dynamic β for (multiple) head-on collisions visible
 - Depends on
 - Beam-beam parameter $\xi (N_p, \varepsilon_N)$
 - note $\xi_{vdM} < \xi_{physics}$
 - Collision pattern
 - Phase advance between IP’s

- Collisions at IP1 only

 ![Dynamic beta* graph]

- Collisions in IP1 &/or IP5 only

<table>
<thead>
<tr>
<th>Collisions</th>
<th>$\beta^_x/\beta^_0x$</th>
<th>$\beta^_y/\beta^_0y$</th>
<th>$\beta^_z/\beta^_0z$</th>
<th>$\beta^_y/\beta^_0y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>IP1</td>
<td>0.994</td>
<td>0.993</td>
<td>0.989</td>
<td>1.018</td>
</tr>
<tr>
<td>IP5</td>
<td>0.989</td>
<td>1.018</td>
<td>0.994</td>
<td>0.993</td>
</tr>
<tr>
<td>IP1 + IP5</td>
<td>0.983</td>
<td>1.011</td>
<td>0.983</td>
<td>1.011</td>
</tr>
</tbody>
</table>

- Other collision patterns
Dynamic β: variation during luminosity scan

- **During luminosity scan**
 - Strength of the force is changing (both planes)
 - Sign of the force is changing (in scanning plane, defocusing \rightarrow focusing)
 - Must expect more complicated pattern
 - Illustrate with simulated scans in IP1
 - Effects for scans at other IPs similar
 - Add’l collisions change starting values

- For a given plane ($\beta^* x$ or y) and scan direction (x or y)
 - Dependence on separation always the same
 - Starting value different, depends on ξ and on collision pattern
Dynamic-β: impact on luminosity-scan curves

- Compute effect of dynamic β on x & y scans: $\mathcal{L} \sim 1 / \sqrt{\beta_{\text{dyn}, x}} \sqrt{\beta_{\text{dyn}, y}}$

- Refit gaussians and compute impact on $\sigma_{\text{vis}} \sim \Sigma_x \Sigma_y \mu_{\text{vis, pk}}$

 $\Delta \sigma_{\text{vis}} / \sigma_{\text{vis}} = 0.5\%$ significant in view of total uncertainty $\Delta \mathcal{L} / \mathcal{L} = \pm 1.8\%$

 included in $\Delta \mathcal{L} / \mathcal{L}$
The bad: beam-beam-induced orbit shift during scan

Impact on Σ?
- sign/magnitude
- Q-dependent
- worse than dyn. β?
- to be investigated!

Impact Parameters:
- E_b (TeV): 4
- N_p (10^{11}): 0.8
- ϵ_N (μm-r): 3.75
- β^* (m): 11
- Q_x: 64.28
- Q_y: 59.31

List of Parameters:
- $\Delta y = 0$
- 0.26μrad
- $\Delta y = 4\sigma_b$
- $\Delta y = 1\sigma_b$
- 3.7μ ($\Sigma_x = 140 \mu$)

Equations and Expressions:

\[\Delta y = 0 \]
\[0.26 \mu \text{rad} \]
\[\Delta y = 4\sigma_b \]
\[\Delta y = 1\sigma_b \]
\[3.7 \mu \]
The ugly: beam-separation scans under physics conditions

- Example of opportunistic study during intensity ramp-up (fill 3109)
 - Beam conditions representative of physics running
 - $\beta' = 0.6$ m, $\theta_c = \pm 145$ μrad
 - 50 ns trains, 1.2 E11 p/bunch, 726 bunches
 - Goals
 - Provide check on absolute \mathcal{L} calibration?
 - Characterize transverse phase space (tails, non-linear x-y correlations)
 - Check stability of scan results wrt scanning protocol (e.g. hysteresis,...)
 - μ-dependence check: quantify relative linearity of different luminometers & algorithms at one point in time (< 1% ?)

![Graph showing luminosity data with $0.001 < \mu < 24$]
The ugly: impact of long-range encounters on \mathcal{L} scans

May 2011
vdM scan

Orbit drift

Total # Long-Range Encounters

μ-Scan I
μ-Scan II

W. Kozanecki
The ugly: impact of bunch trains on \mathcal{L}-calibration systematics

- ε growth \leftrightarrow long-range b-b?
- scan distortions \leftrightarrow b-b kicks?
- non-linear correlations from injector chain or within LHC?
- any other ideas?

May 2011 vdM scan
Do ‘s and don’t ‘s: lessons learnt (1)

- Don’t use...
 - bunch trains
 - beam-beam kicks (+ distortions?) from long-range encounters
 - injected phase-space quality
 - satellites & ghost charge
 - more abundant
 - harder to analyze
 - \(\mathcal{L} \) afterglow
 - high bunch intensities (> 1 E11 p)
 - orbit distortions during scan
 - dynamic \(\beta \) during scan
 - injected phase-space quality
 - satellites & ghost charge (?)
 - instabilities (impedance? \(Q \) spread from LR beam-beam ?)
 - \(\mu \) too high (if low \(\beta^* \)) \(\rightarrow \) potential detector non-linearities

- Do favor...
 - sparse patterns of indiv. bunches
 - no parasitic encounters
 - weaker satellites & ghost charge
 - sparse pattern \(\rightarrow \) low afterglow
 - no Xing-angle constraints
 - keep ‘your’ bunches private
 - allows tailoring of injected phase space
 - moderate bunch intensities (~ 8-9 E10 p/b)
 - if higher: scan curve distortions
 - beam-beam kicks \(\rightarrow \) orbit
 - dynamic \(\beta \)
 - if much lower
 - \(\mathcal{L} \)-calibration statistics- & systematics-limited
 - machine-protection constraints
A detour: beam-gas & luminous-region imaging

Resolution systematics critical: 10% on resolution \rightarrow 1% on each of σ_1, σ_2

- Beam-gas imaging (LHCb only)
 \Rightarrow measure $\sigma_{1,x,y}, \sigma_{2,x,y}$ separately \Rightarrow independent absolute L calibration

- Luminous-region imaging
 \Rightarrow msre $\sigma_{L,x,y}$ + their dependence on $\Delta_{x,y}$ during vdM scan

Measured ($\sigma_{1,2} \sim 90 \mu$m for $\varepsilon = 3.5 \mu$m, $\beta^* = 11m$)

Vertex resolution $\sim 30 \mu$m

Colliding bunch (beam 1)

Interaction between beam and residual gas molecule

Shape and position of luminous region
Absolute-\(\mathcal{L}\) calibration challenge: non-factorization effects

- Two very challenging issues in first two 2012 \(vdM\) scans (Apr + Jul ‘12)
 - Scan-to-scan irreproducibility and/or systematic trend: 2-3 \% (\(\Rightarrow \sigma_{\text{syst, ATL}} \sim 3.6 \%, \sigma_{\text{syst, CMS}} \sim 4.4 \%\))
 - Breakdown of x-y factorization in the 3-d \(\mathcal{L}\) distribution
 - aka ‘non-linear x-y correlations’
 - observed during \(vdM\) scans by all of ATLAS, CMS, LHCb (evidence compelling, but available data sets make quantitative comparisons difficult)

- These 2 issues
 - are clearly beam-dynamics effects, time-dependent & different fill-to-fill (instrumental drifts ruled out)
 - appear mutually related

- Factorization assumes that shape of \(vdM\) scan curve during an x (y) scan is independent of the separation \(\Delta y\) (\(\Delta x\)) in the orthogonal plane
 - if this assumption is satisfied, the combination of 1 x-scan and 1 y-scan is sufficient to characterize the entire distribution \(\mathcal{L}\) (\(\Delta x, \Delta y\))
 - if this is violated at a “significant” level, the \(vdM\) formalism could be generalized to 2-d by performing a full 2-D grid scan (but: impractical!)
Testing factorization of $L (\Delta x, \Delta y)$ during vdM scans

Convolved beam size Σ (width of vdM scan curve)

Vertical luminous size σ_L (beamspot width)

Convolved beam size Σ (width of vdM scan curve)

- **Fill 2855**
 - Data (Centred x-scan VI July 2012)
 - Simulated profile of each beam: 3-D triple Gaussian

- **Fill 2856**
 - Data (Centred x-scan VI July 2012)
 - Simulated profile of each beam: 3-D triple Gaussian

Vertical luminous size σ_L (beamspot width)

- **Fill 3311**
 - Data (Centred x-scan XIV November 2012)
 - Simulated profile of each beam: 3-D double supergaussian

- **Fill 3311**
 - Data (Centred x-scan XIV November 2012)
 - Simulated profile of each beam: 3-D double supergaussian

Testing factorization of $L (\Delta x, \Delta y)$ during vdM scans

Convolved beam size Σ (width of vdM scan curve)

Vertical luminous size σ_L (beamspot width)

The large reduction in non-linear x-y correlations, between the July & Nov 2012 scans, was achieved mainly by careful preparation of highly gaussian beams in the injectors.

The elimination of ε blowup by multiple scattering in a transfer line, and the reduction of the LHC octupole strength, may also have played a role.

The beam-beam contribution to non-factorization effects was deemed negligible by comparison.
Do’s and don’t ‘s: lessons learnt (2)

Don’t...

- use small β^*
 - reconstructed luminous width σ_L (= beamspot width) becomes resolution-dominated and very difficult to analyze
 - $\mu \sim 5$ too high for comfort: potential detector non-linearities

- push for small emittances
 - the smaller ϵ, the more σ_L is resolution-dominated

- set nominal crossing angle
 - complicates measurement/characterization of satellites
 - notable exception: LHCb needs large Xing-angle for beam-gas enhanced ghost-charge measurement

- scan > 1 IP at a time
 - beam-beam defl + leaking bumps

Do favor...

- large β^* (present injection optics: $\beta^* = 11$ m)
 - make σ_L ALAP (\leftrightarrow resolution)

- nominal emittances
 - make σ_L ALAP (\leftrightarrow resolution)
 - BUT avoid anything that creates non-gaussian tails (e.g. ϵ blowup by screen in transfer line)

Large enough σ_L critical for

 (a) non-factorization systematics
 (b) L calibration by beam-gas imaging

- beams as gaussian as possible in SPS + LHC
 - tailor injected phase space (still an art more than a science...)
 - avoid strong octupoles

- zero crossing angle
 - optimize satellite reconstruction
Do ‘s and don’t ‘s: wish list for vdM scans in 2015 (& beyond...)

- Reproducibly “tailor” injected p phase space to minimize non-linear correlations

 Critical for limiting non-factorization systematics

- “Generous” luminous width σ_L

 - injection optics or larger ($\beta^* > 10$)

 - “nominal” emittance ($\epsilon_N \sim 3 \mu$)

 Large enough σ_L critical for BGI and non-factorization systematics

 Note that the E_{beam} increase ($4 \rightarrow 6.5$ TeV) shrinks the beams by $\sqrt{2}$ – while the vertex resolution remains the same

- Round beams ($\beta_x^* = \beta_y^*$)

 - The vdM method can handle tilted elliptical beams (residual x-y coupling!) – but at the cost of additional scans ($x/y \rightarrow x/y/u/v$)

- No crossing angle (except LHCb)

 - reconstruct satellites by vtxg

- Crab off (when it appears...)

 - avoid banana shapes, phase/ Xing angle jitter,....

- Sparse patterns (no trains!)

- Low bunch intensities

- Flexible, file-driven scan-control software

 - allow for complex scan patterns

 - diagonal scans, off-axis scans,...

 - leapfrog length-scale calibration

 - minimize scanning time, costly cockpit errors

 - must provide for rigorous MPP validation pre-checks
In conclusion...

- **Need to refine understanding of head-on beam-beam effects during scans:** impact on L calib. systematics larger than thought so far?
 - more careful evaluation (+ correction?) of dynamic-β scan distortions
 - quantify (+ correct?) impact of in-plane orbit distortions during scans
 - quantify impact of (i) orbit distortions & (ii) b-b induced skew quad on off-axis scans (\rightarrow crisper evaluation of non-factorization symptoms)

- **Limitations in long-term luminosity & beam-background monitoring**
 - EOF scans impractical because of beam-beam (+ non-linear correlations)
 - makes long-term monitoring of L stability much more difficult
 - Landau damping vs. instabilities & single-beam background monitoring
 - removing non-colliding bunches unfortunate – any way to rescue these?

- **The need to limit, during L-calibration scans, the impact of**
 - head-on beam-beam kicks + dynamic β, on scan-shape distortions
 - long-range encounters, on scan-shape distortions
 - vertexing resolution, on B-G imaging & quantification of non-factorization effects

significantly constrains the operational conditions during vdM scans
\rightarrow iterate with LHC operations group on pragmatic solutions
Additional material
Systematic uncertainties on 2011 \mathcal{L} determination (ATLAS)

<table>
<thead>
<tr>
<th>Uncertainty Source</th>
<th>$\delta \mathcal{L}/\mathcal{L}$ (2010)</th>
<th>$\delta \mathcal{L}/\mathcal{L}$ (2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunch Population Product</td>
<td>3.1%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Other vdM Calibration Uncertainties</td>
<td>1.3%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Afterglow Correction</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>BCM Stability</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Long-Term Consistency</td>
<td>0.5%</td>
<td>0.7%</td>
</tr>
<tr>
<td>μ Dependence</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Total</td>
<td>3.4%</td>
<td>1.8%</td>
</tr>
</tbody>
</table>

Table 7: Relative systematic uncertainties on the determination of the visible cross-section σ_{vis} from vdM scans in 2011.

<table>
<thead>
<tr>
<th>Scan Number</th>
<th>VI–VII</th>
<th>Fill Number</th>
<th>1783</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam centring</td>
<td>0.10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam-position jitter</td>
<td>0.30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emittance growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and other non-reproducibility</td>
<td>0.67%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bunch-to-bunch σ_{vis} consistency</td>
<td>0.55%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fit model</td>
<td>0.28%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Background subtraction</td>
<td>0.31%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Luminosity</td>
<td>0.29%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length scale calibration</td>
<td>0.30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute ID length scale</td>
<td>0.30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam–beam effects</td>
<td>0.50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transverse correlations</td>
<td>0.50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ dependence</td>
<td>0.50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scan subtotal</td>
<td>1.43%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bunch population product</td>
<td>0.54%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.53%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

σ_{vis} uncertainty (vdM scans)

Total \mathcal{L} uncertainty (physics runs)
Direct measurement of μ-dependence: pile-up (‘μ’) scan

‘μ sweep’ performed by beam-separation in F 2086 ($873 b, \mathcal{L} \sim 1.9 \times 10^{33}$)

\rightarrow characterize the relative μ-dep. of BCM H/V, FCal, LUCID, TILE, vtx algos

3 scans, covering $10 - 15 > \mu > 0.02$

i.e. all the way from normal physics conditions to (slightly below) the μ regime for the $\beta^* = 90 \text{ m} \ ALFA \ run$
μ-dependence during 2012 physics running: individual runs

April vdM scan: Run 201351

ATLAS Internal
Data 2012, √s = 8 TeV
Run 209629, September 2 2012

ATLAS Internal
Data 2012, √s = 8 TeV
Run 213539, Oct 28 2012

ATLAS Internal
Data 2012, √s = 8 TeV
Run 203636, May 19 2012
Long Term Stability 2012

BCM and Lucid internally consistent

Calorimeters + Mpx suggest drift of 2%

± 2% envelope
The mild: emittance growth during scans

Emittance growth for different static offsets with beams colliding in one IP only and no long-range interactions

\[\langle \Delta \varepsilon / \varepsilon \rangle \sim 3 \times 10^{-5} / \text{sec} \Rightarrow \sim 0.1 \% \text{ over duration of a scan} \]
The mild: beam-beam kicks during scan from shared bunches

Colliding bunches experience ≠ b-b kicks at IP 2 & 8 – but “moderate” wrt ∑

Σ ~ 57 μm
Luminosity afterglow

\mathcal{L} @ ATLAS: vdM scans

Beam-gas + halo

\mathcal{L} @ ATLAS: physics

Afterglow

\mathcal{L} @ CMS: physics

Afterglow
A fundamental assumption: x-y factorization of $L(\Delta x, \Delta y)$

- A key assumption of the vdM scan method as currently applied is that the luminosity

$$L = n_b f_1 n_1 n_2 \int \hat{\rho}_1(x, y) \hat{\rho}_2(x, y) dx dy$$

factorizes in x & y:

$$L = n_b f_1 n_1 n_2 \Omega_x(\rho_{x1}, \rho_{x2}) \Omega_y(\rho_{y1}, \rho_{y2}) \quad \Omega_x(\rho_{x1}, \rho_{x2}) = \int \rho_{x1}(x) \rho_{x2}(x) dx$$

- This is equivalent to assuming that the shape of the scan curve during an x (y) scan is independent of the separation Δy (Δx) in the orthogonal plane
 - if this is the case, the combination of 1 x-scan and 1 y-scan is sufficient to characterize the entire distribution $L(\Delta x, \Delta y)$
 - if this is violated at a “significant” level, the vdM formalism can be generalized to 2 dimensions by performing a grid scan (impractical!)

- Although linear x-y coupling does violate this assumption, the induced bias is typically very small ($\Delta L/L \sim 0.1\%$) with present LHC optics (small x-y coupling coeff., $\varepsilon_x \sim \varepsilon_y$, $\beta^*_x \sim \beta^*_y$)
To estimate (roughly) the magnitude of a potential NLC-induced bias, ATLAS routinely compared the visible cross-sections (i.e. the L calibration scales) obtained by fitting the x- & y- vdM-scan curves using either

- an uncorrelated model (= baseline): $g+g$ (can simplify to g, or to $g+p0$)

$$L(x,y) = A \left(f_x e^{-\Delta x^2/2\sigma x_1^2} + (1 - f_x) e^{-\Delta x^2/2\sigma x_2^2} \right) \times \left(f_y e^{-\Delta y^2/2\sigma y_1^2} + (1 - f_y) e^{-\Delta y^2/2\sigma y_2^2} \right)$$

- a correlated double-gaussian model (naïve & by no means unique)

$$L(x,y) = A \left(f e^{-\Delta x^2/2\sigma x_1^2} e^{-\Delta y^2/2\sigma y_1^2} + (1 - f) e^{-\Delta x^2/2\sigma x_2^2} e^{-\Delta y^2/2\sigma y_2^2} \right)$$

that reduces to the uncorrelated model at $\Delta x = \Delta y = 0$ (but with $f_x = f_y$)

Observed impact on visible cross-sections at $\sqrt{s} = 7$ TeV (ATLAS)

- $\Delta \sigma_{vis} / \sigma_{vis} \sim 3\%$, 2\%, 0.9\%, 0.5 \% for Apr ’10, May ’10, Oct ’10, May ’11

- The more single-gaussian the scan curves, the smaller the potential bias (a property of this model – but probably not a general property?)

- As the effect looked small for the two main 7 TeV scan sessions, and for lack of manpower, didn’t look much further until large 2012 signal
Comparison of uncorrelated & correlated fits to vdM scan curves

April 2012, 8 TeV p-p VDM Scans

Uncorrelated (= factorizable)
\[\mathcal{L} \sim G_1(x) G_2(y) \]

Correlated (non-factorizable)
\[\mathcal{L} \sim \alpha g_N(x, y) + (1 - \alpha) g_W(x, y) \]

July 2012, 8 TeV p-p VDM Scans

Uncorrelated

Correlated

0.4 %

1.8 %

1.6 %

3.0 %

2.8 %
Comparison of uncorrelated & correlated fits to vDM scan curves

Notes
- The true bias may be larger than the difference between uncorrelated & correlated fits (coupling-model dependence?)
- There may be other coupling models which also yield a stable central value, but significantly different from the present one.

Uncorrelated

\(L \sim G_1(x) G_2(y) \) (= factorizable)

Correlated

\(L \sim \alpha g_N(x, y) + (1 - \alpha) g_W(x, y) \) (non-factorizable)

July 2012, 8 TeV p-p VDM Scans

- **Scan 1**: Uncorrelated
 - Count: \(\sigma \) ~ 36 + 1.6 %
 - Correlated
 - Count: \(\sigma \) ~ 36 + 1.6 %
- **Scan 2**: Uncorrelated
 - Count: \(\sigma \) ~ 35 + 3.0 %
 - Correlated
 - Count: \(\sigma \) ~ 35 + 3.0 %
- **Scan 3**: Uncorrelated
 - Count: \(\sigma \) ~ 35 + 2.8 %
 - Correlated
 - Count: \(\sigma \) ~ 35 + 2.8 %
Production of (more) gaussian beams in the injector chain:
PSB/PS/SPS MD of 2 Nov 12 for vdM improvement

SPS WS profile (H)
18 Jul 12, LHCb vdM fill

Injector MD of 2 Nov 12
(G. Rumolo, H. Bartosik)

In PSB:
• inject high intensity, large ε
• longitudinal shaving (RF $V \downarrow \downarrow$)
• transverse shaving
$\Rightarrow N \sim 8E10/p$, $\varepsilon \sim 2-3$ μm into CPS

In SPS:
• slight scraping at flat top

Other methods also tried (injection missteering in PSB, $Q \Rightarrow$ integer on SPS flat bottom) but were less successful
Production of (more) gaussian beams in the injector chain (2)

SPS WS profiles
18 Jul 12
LHCb vdM fill

SPS WS profiles
02 Nov 12
Injector MD

Data
$g + p0$ fit