

Modeling Beam-Beam in Tevatron

Alexander Valishev, Fermilab

Acknowledgments

Y. Alexahin, V. Lebedev, T. Sen, V. Shiltsev, E. Stern (FNAL)

D. Shatilov (BINP)

March 19, 2013
ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders

Outline

- Pre-Run II and early Run II
- Analytical models
- Luminosity modeling
- Weak-strong simulations
- Strong-strong simulations

Typical Collider Cycle L₀=3.5x10³²

A. Valishev, Modeling Beam-Beam in Tevatron, BB-2013

Run Ib to Run II – 6 bunches to 36

	Run Ib	Run IIa
	$p/ar{p}$	$p/ar{p}$
Luminosity [cm ⁻² sec ⁻¹]	1.6×10^{31}	8.6×10^{31}
Bunch Intensities $\times 10^{11}$	(2.3/0.55)	(2.7/0.3)
Emittances 95% [mm-mrad]	23/13	20/15
Number of bunches	6	36
Bunch separation [m]	1049.3	118.8
Beam size at IP [μ m]	37/28	33/29
Beam-beam parameter/IP $\times 10^{-3}$	3.4/7.4	1.5/9.9

- In Run IIb the number of bunches was to increase >100 because it was expected the experiments would be unable to sustain pileup above 0.85x10³²
- Planned weak-strong operation, ξ a=0.02, ξ p=0.003

Run Ib to Run II – 6 bunches to 36

- The significance of 70 long-range interactions for antiproton lifetime was recognized (T. Sen et al, PAC'01)
- Simulated weak-strong DA~8 σ at Δ p/p=0, expected DA<6 σ for realistic conditions

Proton Lifetime at Injection Energy

- Proton losses during pbar injections were a significant limiting factor early in Run II
- Simulations identified that a combination of strong sextupoles and long-range interactions reduced DA
- How one relates DA to lifetime or emittance growth? Nevertheless:
 - Sextupole strength was lowered owing to reduction of impedance
 - Helical orbits were rearranged to improve long-range

Analytical Models

- Bunch-by-bunch orbit, tune, coupling, chromaticity due to beam-beam
- Resonance Driving Terms. 7th order and 12th order RDTs were used as criteria for optimization of
 - Helical orbits
 - Proton working point

Y.Alexahin, PAC'07

Beam-Beam in Overall Picture

- Beam-beam is not the single effect determining the evolution of luminosity. Tevatron luminosity lifetime was significantly affected by
 - Luminous particle losses
 - Intrabeam scattering
 - Beam-gas scattering
 - Noise
- Tevatron strived to extract every % of potential integrated luminosity from beams delivered by injectors
- A comprehensive model of luminosity evolution was necessary to understand the quantitative significance of beam-beam effects

Luminosity Evolution Model

- The model of luminosity evolution makes use of finite-step numerical integration of a system of equations for bunch intensities and emittances of the two beams
- No fitting of luminosity to predefined function the '<u>ultimate'</u> <u>luminosity integral is predicted</u> based on initial values of beam intensities and emittances
 - model parameters e.g. noise strength were measured in beam studies
- Deviation from this 'ultimate' luminosity <u>quantifies the strength</u> <u>of beam-beam effects</u>

V.Lebedev, PAC'03

$$\frac{d\varepsilon_{x}}{dt} = -\frac{2\varepsilon_{x}}{\tau_{SRx}} + \frac{d\varepsilon_{xSR}}{dt} + \frac{d\varepsilon_{xIBS}}{dt} + \frac{d\varepsilon_{xBB}}{dt} + \frac{d\varepsilon_{xExt}}{dt}$$

$$\frac{d\varepsilon_{y}}{dt} = -\frac{2\varepsilon_{y}}{\tau_{SRy}} + \frac{d\varepsilon_{ySR}}{dt} + \frac{d\varepsilon_{yIBS}}{dt} + \frac{d\varepsilon_{yBB}}{dt} + \frac{d\varepsilon_{yExt}}{dt}$$

$$\frac{d\sigma_{E}^{2}}{dt} = -\frac{2\sigma_{E}^{2}}{\tau_{SRE}} + \frac{d\sigma_{SR}^{2}}{dt} + \frac{d\sigma_{IBS}^{2}}{dt} + \frac{d\sigma_{BB}^{2}}{dt}$$

$$\frac{dN}{dt} = -N_{IP} \frac{L}{N_{b}} \sigma_{tot} - \frac{N}{\tau_{Ext}}$$

Store 4581, L₀=1.72x10³² Old Helix

Store 4859, $L_0 = 1.70 \times 10^{32}$ New Helix

Lifetrac Weak-Strong Simulations

- Weak-strong, Gaussian strong bunch
- Macro-particle weak bunch, typically 10000 particles
 - Average over large number of turns to improve statistics
- Full details of the measured machine optics, beam separation, and collision pattern with all 72 IPs
- Effect of noise/diffusion
- Parallel, capable to simulate up to 10⁸ turns
- 'Measurable' quantities emittances and beam life time
 D. Shatilov et al, PAC'05

Model Cross Check

- Interaction of beambeam with extrinsic diffusion is non-trivial.
- External noise provides particle transport in the regions of the phase space which are free from resonance islands

Proper simulation of emittance growth requires both beam-beam and diffusion

DA vs. Multiparticle: Lifetime Effect of Tune Chromaticity

Fast Antiptoron Blow-up in Collision

DA vs Multiparticle: Emittance

Tevatron Ultimate Parameters

Number of bunches	36
Protons per bunch	2.9×10^{11}
Antiproton per bunch	0.9×10^{11}
Initial proton emittance (95% norm)	18 <i>m</i> m
Initial antiproton emittance (95% norm)	8 mm
Initial proton bunch length	0.55 m
Initial antiproton bunch length	0.45 m
eta-function at IP	0.28 m
Proton working point (Q_x, Q_y)	20.583, 20.585
Proton chromaticities (Cx, Cv)	4, 5
Initial luminosity	$4.0 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$
Luminosity lifetime	5 h

Effect of P/A Emittance Ratio

After

- \square Correction of β^* chromaticity
- Careful choice of working point

A. Valishev, Modeling Beam-Beam in Tevatron, BB-2013

Normalized Beam Intensity

Effect of β^* Chromaticity

- Modulation of transverse beam size by synchrotron oscillations
- \blacksquare Not exactly d²Q/d δ ²

Store 5245, $L_0 = 2.92 \times 10^{32}$

Store 6200, $L_0 = 2.95 \times 10^{32}$

Strong-Strong Simulations

Motivation

Weak-strong simulations clearly demonstrated the benefit of running at lower chromaticity

■In HEP mode, the head-on tune spread stabilizes coherent

instabilities

What is the chromaticity threshold during low-beta squeeze when beams experience only long-range interactions?

In special study beams were separated at end of a store headtail developed

BeamBeam3D Simulation

- PIC solver for beam-beam interactions (J.Qiang, LBNL)
- Multi-bunch, Tevatron optics and collision pattern
- Resistive wall impedance

E. Stern et al, PRSTAB (2010)

Measured Effect of Chromaticity

A. Valishev, Modeling Beam-Beam in Tevatron, BB-2013

Summary

Beam-beam modeling was evolving in the course of Tevatron collider Run II

- To address immediate questions/challenges
- Plan improvements
- Steer the development of collider program

- There is nothing fundamentally complex in modeling beam-beam in hadron machines. Rather, complexity stems from significance of details and analysis of large amount of experimental data
 - However, see following talks

Thank you for your attention!

A. Valishev, Modeling Beam-Beam in Tevatron, BB-2013