Summary for
Single particle effects I (head-on)

K. Oide (KEK)

Beam-beam effects under the influence of external noise (30')
Kazuhito Ohmi (KEK)

Beam-beam effects with a high pile-up test in the LHC (30')
Georges Trad (Universita e INFN, Roma I (IT))

Measurements of the effect of collisions on transverse beam halo diffusion in the Tevatron and in the LHC (30')
Giulio Stancari (Fermi National Accelerator Laboratory)
Emittance growth caused by random noise in the offset at collision + nonlinear beam-beam force. (theory, simulation)

Noise in the rf phase of crab cavity.

Intrabeam scattering.

Nonlinear response of coherent beam-beam oscillation modes.
Emittance growth caused by random noise

Weak-strong model:

\[
\frac{\langle \Delta J^2(N) \rangle}{N} = \left(\frac{N_p r_p}{\gamma} \Delta x \right)^2 \frac{1}{8} \sum_{k=0}^{\infty} \frac{(2k + 1)^2 G_k(J)^2 \sinh \Theta}{\cosh \Theta - \cos(2\pi(2k + 1)\nu_x)},
\]

\[
\Theta = -\ln(1 - 1/\tau)
\]

for \(K(n) = \delta_{0n} \)

Strong-strong model:

\[
\frac{\delta \varepsilon}{\varepsilon} \approx \frac{K}{\left(1 + \frac{G}{2\pi|x|} \right)^2} \frac{\delta x^2}{\sigma_x^2} \quad G = 1/\tau
\]

\[
K = 0.089 : \quad \text{form factor}
\]

does not depend on tunes if the noise is white.
Simulation w/wo crossing angle

- Weak-strong simulation
- Quadratic dependence on $\delta x/\sigma_x$ and ξ. $T=1$
- Critical noise amplitude, 0.02% for $\xi=0.04-0.05$.
- Degradation due to noise depends on ξ, and little depends on the crossing angle.
Tolerance for the crab cavity noise

- $\Delta x/\sigma_x=0.002$ for the design parameter $N_p=2.2\times10^{11}$ and $\tau=1$. $\Delta \varphi_{RF}=4\times10^{-4}$ rad.

- $\Delta \varphi_{RF}=4\times10^{-4} \tau$ rad, because of the scaling of τ, $\Delta x \sim \tau$.

$$\Delta \varphi = \frac{\omega_{RF} \Delta x}{c \theta_c / 2}$$

- Measurement in KEKB, 1.7×10^{-4} rad at 1kHz ($\tau=11$). One order of the tolerance.
Jump phenomenon in Beam-beam system, leiiri and Hirata, PAC89

- Jump phenomenon was seen in beam oscillation response in colliding beams of TRISTAN.

Figure 1. Hysteresis phenomena of the ρ-mode.

Figure 2. Resonant curves of the ρ- and the 0-modes with three relative deflector amplitudes, D=-30 dB, -15 dB and 0 dB. The right peaks show the 0-modes and the left the ρ-modes. The start frequency is 28 kHz and the stop is 41 kHz. The horizontal scale is 1.5 kHz/div. and the vertical is 5 dB/div.
Summary

- Review of beam-beam effects under influence of noise.
- Simulation of beam-beam noise for crossing collision in LHC.
- Tolerance of the crab cavity noise. It should be safe.
- The response for a sinusoidal noise (excitation). Good agreement of measurement and simulation.
G. Trad

- Beam-beam effects with high pile-up test in the LHC
- LHC commissioning > exploring the beam-beam parameters
- High Pile-up tests at the LHC
- SPS Q20, new scenarios for brightness
Overview

G.Trad – BB2013 March 19, 2013

ΔQ_h = +0.005 to bring lifetime to 25h

NOMINAL beam beam parameter (0.005) is achieved !!! (May 2010)
The Quest continues...

Fill 1765-1766 (May 2011)

GOALS:
- check the feasibility of colliding high intensity bunches (HO) with a beam beam linear parameter greater than nominal
- E = 450 GeV
- \(\beta^* \) 11 m in all IPs
- Nominal crossing angles and Spectrometers off in IP2 / IP8
- Q: collision tunes (.31 H .32 V)
- ADT on at injection and off afterwards

Set up:
- 1.6*10^11 emitt 1.2 microns at injection \(\rightarrow \) blowup (mainly vertical) end up with average almost 2.2 microns

3 Tests:
- 1 bunch /beam
- 2 bunches x beam
- 4 collisions x bunch

\(\xi : 0.009/IP \), total 0.018 (collide only IP1,5)

Small tune scan, no lifetime effect, emittance blowup beam 2
The Quest continues...

Fill 1765-1766 (May 2011)

Part A

We wanted: symmetric filling scheme with 4 collisions per bunch

Part B

To avoid 10th order resonance tunes moved to .31H .31V

With $N=1.85\times10^{11}$ ppb
\[\varepsilon=1.3 \, \mu m \]
Achieved $\zeta=0.017/IP->$ total 0.034
High pile-up test

BEAM 2

Burn-off/Total losses
≈75%

Burn-off/Total losses
≈43%

Burn-off/Total losses
≈40%

-4.1E9 p/min

-6.6E9 p/min

BETTER LIFETIME AFTER TUNE SCAN??
Tevatron Luminosity Model

\[\varepsilon_{x,y}, N, \sigma_P^2 \]
FILL 2252 Filling - **Losses Observation** - Separation Steps - Emitt. Observation

G.Trad – **BB2013** March 19, 2013
Brighter Injectors

Mid 2012 SPS passing to the Q20 optics...
Even brighter beams can be delivered to the LHC!
High pile up to be repeated with a goal of:
\[\mu = 100 \]

Again, PARASITICALLY, beam parameters were monitored to study the HO b-b factor and its effects on these bright beams.

Fill 2822-2823-2824-2825 (July 2012)

- **2822** -> 1 bunch 3e11 ppb 2 um emittance
 reached stable beams with deteriorated beams. Pile-up 45

- **2823** -> same configuration + increase chromaticity by 3 units
 decided to dump before reached stable beams since the beams were unstable again

- **2824** -> After discovering the problem, 2 bunches 3e11ppb
 stayed 10 min in SB. Pile-up 58
 B1 not cured yet, B2 reached collisions with 2.2 um emittance

- **2825** -> Longitudinal Blow-up issue solved, still instability observed during the squeeze causing losses and blow-up.
 Pile-up 70 reached in IP1
Instability during the squeeze for Beam 1
SUMMARY

Commisioning
 Nominal and beyond beam-beam tune shift was achieved without any particular problems

High Pile-up 1
 Observed emittance growth at injection energy and more through the ramp. Vertical emittance growth observed twice in the vertical plane in beam 1 still under investigations for fill 1, since for fill 2 it corresponds to the separation of the beams. Missing losses contribution to the Luminosity evolution model (not only beam-beam losses?)
 Long Range effects in fill 2252 or just losses from tune resonances?

High Pile-up 2
 Systematic studies (parallel separation, leveling and noise excitation) still to be done. The instabilities that showed up were independently present from the HO tune shift

Under the present conditions we do not consider the HO bb interaction as a limit for the LHC performance
Transverse beam halo diffusion.

The diffusion coefficient is measurable from the transient response of beam loss at a fast in/out of a scraper.

Compare the diffusion coeffs for LHC and Tevatron with beam-beam on/off.
Stochastic character of halo dynamics

Stochastic nature of halo dynamics often empirically confirmed by relaxation of losses $\sim (\text{time})^{-1/2}$ during collimator setup
Diffusion model of loss rate evolution in collimator scans

Distribution function of tails evolves under diffusion with boundary condition at collimator

\[\partial_t f = \partial_J (D \cdot \partial_J f) \]

Instantaneous loss rate is proportional to slope of distribution function

\[R = -k \cdot D \cdot [\partial_J f]_{J=J_c} + B \]

loss monitor calibration

background rate

Beam halo diffusion rates in the Tevatron and in the LHC

Effect of beam-beam is 1-2 orders of magnitude

Halo diffusion in Tevatron dominated by effects other than beam-beam

Beam-beam still dominates?

Very low noise and nonlinearities in LHC

curves from measured core emittance growth

\[D_J = \dot{\epsilon} \cdot J \]
Conclusions

- **Halo dynamics** is often **stochastic**, due to the nature and number of effects in real machines
- **Collimator scans** are a sensitive tool for the study of **halo dynamics vs. amplitude**: diffusion coefficients, lifetimes/fluxes, impact parameters, collimation efficiencies, beam populations
- **First measurements of diffusion vs. amplitude** in Tevatron and LHC
 - **Tevatron**
 - halo dynamics dominated by effects other than beam-beam collisions enhance diffusion rate by 1 to 2 orders of magnitude
 - **LHC**
 - with separated beams, halo diffusion very similar to core: nonlinearities and noise are small
 - in collision (only 1 bunch/beam), diffusion enhancement depends on amplitude, reaching 2 orders of magnitude

Beam-beam still dominates?

Thank you!