Long range beam-beam in LHC (W. Herr)

- Separation with crossing angle
- Up to 120 long range encounters
- Issues very different from Pretzl separation

PACMAN tune effects: calculation

- Alternating crossing planes for passive compensation
- → Minimizes PACMAN effects on tunes and chromaticities
 - Here example: tune along train with and without alternating crossing

Which crossing angle do we need?

For comparison → normalized separation in the drift space:

$$d_{sep} \approx \frac{\sqrt{\beta^*} \cdot \alpha \cdot \sqrt{\gamma}}{\sqrt{\epsilon_n}}$$

- \triangleright Proposed (minimum) separation \approx 12 σ
- \triangleright Crossing angle α depends on β^* (in crossing plane)!
- \longrightarrow Smaller β^* requires increased crossing angle α

Experiment 1: scan of crossing angle - losses

- First test (2011) with $\beta^* = 1.50$ m, intensity: 1.2 10^{11} p/b, emittance: 2.0 2.5 μ m
- Bunch by bunch loss as function of crossing angle in IP1
- Different behaviour of the bunches in the train

PACMAN effects along train

- Integrated losses and number of long range interactions
- > 'PACMAN' effects clearly visible, and exactly reproducible !!

Can we understand the observations?

- Try an analytical model (allows to study parametric dependencies)
- Based on computation of beam-beam invariants and smear(W.Herr, D.Kaltchev; IPAC09) → D. Kaltchev, this session
- Can compute invariants for individual long range encounters
 - Derive scaling laws for dynamic aperture (losses) etc.
 - Find the "critical" long range encounters
 - Estimate effects for future machine (in finite time, i.e. without tracking) HL-LHC, HE-LHC

Test of parametric dependence (separation, intensity)

experiment	emittance	eta^*	Intensity
2011 (50 ns)	2.0 - $2.5~\mu\mathbf{m}$	1.5 m	$1.2 10^{11}$
2012 (50 ns)	2.0 - $2.5~\mu\mathbf{m}$	0.6 m	$1.2 10^{11}$
2012 (50 ns)	2.0 - $2.5~\mu\mathrm{m}$	0.6 m	$1.6 10^{11}$
2012 (25 ns)	3.5 - $4.0~\mu\mathrm{m}$	1.0 m	$1.2 10^{11}$

- > Combination of parameters allows parametric studies
- Normalized separation adjusted with β^* and crossing angle: $\sqrt{\beta^*} \cdot \alpha = \text{const.}$

Test of parametric dependence (separation, intensity)

- Recent test (2012) with $\beta^* = 0.60$ m, intensity: 1.6 10¹¹ p/b
- \blacktriangleright Initial separation \approx 9 9.5 σ
- Losses start \approx 6 σ separation (α = 96 μ rad)

Test of parametric dependence (separation, intensity)

- Recent test (2012) with $\beta^* = 0.60$ m, intensity: 1.2 10¹¹ p/b
- \blacktriangleright Initial separation \approx 9 9.5 σ
- Losses start \approx 5 σ separation (α = 87 μ rad)

Idea:

Long range beam-beam on a particle at amplitude n_{σ} depends on set of parameters:

$$n_{\sigma}, N_b, n_{lr}, \alpha, \epsilon_n, \gamma, \dots$$

Find a (analytical) model (\mathcal{M}) to parametrize non-linear long range beam-beam strength

$$\mathcal{M}(n_{\sigma}, N_b, n_{lr}, \alpha, \epsilon_n, \gamma, ..)$$

To allow comparison and extrapolation

Try a model with smear $S(n_{\sigma})$

- **Procedure to find analytical expression** $S(n_{\sigma})$:
 - Use Lie-algebraic method to derive generalized invariant
 - Smear $S(n_{\sigma})$ is "r.m.s." of invariant (integrated over Φ)
- > Valid for multiple IPs, long range interactions
- Compare with tracking, estimate where comparison breaks down

How do we use that?

Ideally we would have for two configurations a and b:

$$S(n_{\sigma}, N_b^a, n_{lr}^a, \alpha^a, \epsilon_n^a, \gamma^a, ...) = S(n_{\sigma}, N_b^b, n_{lr}^b, \alpha^b, \epsilon_n^b, \gamma^b, ...)$$

If the smear is the same, the behaviour should be the same

To compare two of our experiments:

$$S(n_{\sigma}, 1.2 \ 10^{11}, n_{lr}^{a}, \alpha^{a}, \epsilon_{n}^{a}, \gamma^{a}, ..) = S(n_{\sigma}, 1.6 \ 10^{11}, n_{lr}^{b}, \alpha^{b}, \epsilon_{n}^{b}, \gamma^{b}, ..)$$

If α^a is known \longrightarrow we computed expected α^b

In our case: $\alpha^a = 96 \ \mu rad$ theory says $\alpha^b = 86 \ \mu rad$, found 87 μrad

Similar procedure should apply to other parameters

- > Start of losses (critical angles) can be explained with analytical smear formula
- Can be used (for after LS1 and HL-LHC, etc..):
 - compare different configurations (without tracking)
 - extrapolate between 50 ns and 25 ns spacing
- > Optimization of collisions scenarios much easier with this technique

Expected scaling laws: dynamic aperture

- This allows to derive scaling laws
- Scaling laws for long-range dynamic aperture DA

$$DA \propto \frac{1}{n_b}$$
 (number of bunches)
 $DA \propto \frac{1}{\sqrt{\epsilon}}$
 $DA \propto d_{sep} \propto \alpha$
 $DA \propto d_{sep} \propto \sqrt{\beta^*}$
 $DA \propto \frac{1}{N}$ (Intensity)

Can make estimates for parameters for future machines (HL-LHC, ..)

Summary - long range beam-beam in the LHC

- Plenty of experience in two years and significant progress understanding
- Long range interactions main source of dynamic aperture
- > PACMAN effects very visible require attention
- > Scaling laws have been established, can serve for extrapolation for new configurations

The long range problem

Some answers from beam-beam studies (experiments and theory):

- Effect on dynamic aperture? Yes
- \triangleright What is the required separation ? $\geq 10 \sigma$
- ▶ Do we have PACMAN effects? Yes
- > Do alternating crossing schemes help? Yes
- Can we collide with offset beams? Yes
- Can we predict anything? Yes

Tevatron Long-Range Summary

A.Valishev for V.Shiltsev

- In the Tevatron Run II, 36x36 bunch collisions made for 72 crossings per revolution per bunch. The total number of interaction points was 138.
 - Several steps in longitudinal cogging during antiproton injection created additional complication of the collision pattern.
- Long-range beam-beam effects manifested themselves in reduction of beam lifetime and accelerated emittance growth.
 - This accounted for as much as 50% luminosity loss early in Run II down to ~5-10% at the end.
- No coherent effects attributed to beam-beam

- At injection energy, LR beam-beam was the dominant factor for intensity losses both in proton and antiproton beams.
 - Especially noticeable for off momentum particles, and strongly related to the tune chromaticity (strength of sextupoles).
- During low-beta squeeze and collisions, LR also caused transverse emittance growth.
 - In squeeze beams briefly (2s) came within 2-2.5 σ at 1 point. This caused sharp loss spikes.
 - At collisions 4 crossings at 5.8-6 σ separation were essential. The rest LR's were at 8-10 σ

- Bunch-to-bunch (pacman) effects were significant - particle losses AND fast differential emittance growth.
 - Differences in tunes, coupling and chromaticity were essential due to the confined space in tune diagram.
 - Orbit difference did not have adverse effect on performance.

"Scallops" in Pbar Bunch Emittances

- Dedicated beam experiments were conducted to identify problematic locations.
- Day-by-day careful analysis of beam data (and especially bunch-by-bunch data) from HEP stores was key to understanding beam-beam performance and scaling.
- Extensive modeling
 - Weak-strong particularly useful.
 - Very practical was computation of RDT's

- LR effects were mitigated by:
 - Increase of separation by installation of extra separators.
 - Rearrangement of helical orbits.
 - Optimization of machine optics linear and nonlinear.
 - Pulsed e-lense
 - Large number of incremental improvements, no "silver bullet".