Recent beam-beam effects at VEPP-4M & VEPP-2000

Dmitry Shwartz

BINP, Novosibirsk

March 18, 2013

ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders

VEPP-4M

VEPP-4M luminosity

VEPP-2000

Motivation of the round beam use in e+e- collider

Number of bunches (i.e. collision frequency)
 <u>Bunch-by-bunch luminosity</u>

$$L = \frac{\pi \gamma^2 \xi_x \xi_y \varepsilon_x f}{r_e^2 \beta_y^*} \left(1 + \frac{\sigma_y}{\sigma_x}\right)^2$$

Round Beams: $L = \frac{4\pi\gamma^2 \xi^2 \varepsilon f}{r^2 \beta^*}$

✓Geometric factor:

✓ Beam-beam limit enhancement:

 $\xi \ge 0.1$

 $\left(1+\sigma_{y}/\sigma_{x}\right)^{2}=4$

✓ IBS for low energy? Better life time!

The Concept of Round Colliding Beams

Axial symmetry of counter beam force together with x-y symmetry of transfer matrix should provide additional integral of motion (angular momentum $M_z = x'y - xy'$). Particle dynamics remains nonlinear, but becomes 1D.

- Head-on collisions
- Small and equal β-functions at IP:
- Equal beam emittances:
- Equal fractional parts of betatron tunes:

V.V.Danilov et al., EPAC'96, Barcelona, p.1149, (1996)

"Weak-Strong" Beam-Beam Simulations

I.Nesterenko, D.Shatilov, E.Simonov, in Proc. of Mini-Workshop on "Round beams and related concepts in beam dynamics", Fermilab, December 5-6, 1996.

"Strong-Strong" Beam-Beam Simulations

Beam size and luminosity vs. the nominal beam-beam parameter (A. Valishev, E. Perevedentsev, K. Ohmi, PAC'2003)

VEPP-2000 layout & parameters

Main	parameters	@ 1GeV
------	------------	--------

Circumference	24.388 m	Energy	200 ÷ 1000 MeV
Number of bunches	1	Number of particles	1×10 ¹¹
Betatron tunes	4.1/2.1	Beta-functions @ IP	8.5 cm
Beam-beam parameter	0.1	Luminosity	$1 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Lattice functions of half of the ring

VEPP-2000 lattice special feature: β^* variation modifies radiative beam emittance in the way that $\beta^* \epsilon = \sigma^{*2} = inv (\beta^*)$

Beam size measurement by CCD cameras

Round Beams Options for VEPP-2000

Working points for different options

Arguments in favor of work on a coupling resonance

Advantages of (+- +-) option as compared to the "basic mode" (++ ---):

- 1) Easy switch to flat beams
- 2) Better sextupole solution, wider dynamic aperture

Disadvantages not yet known

Luminosity scaling approach

Dynamic beta, emittance and size

Calcs for E = 500 MeV. 50mA corresponds to $\xi \sim 0.1$

Dynamic beta, emittance and size

Dynamic sizes at the beam-size monitors

Luminosity measurement via beam sizes @ CCD cameras

Luminosity vs. beam energy

Beam current vs. energy

Nominal beam-beam parameter

Beam size growth @ IP

Luminosity & "real" bb-parameter

"Flip-flop" effect

High order resonances

Summary

- «Round beams» not a bad idea!
- Maximum luminosity achieved: 1×10^{31} cm⁻²s⁻¹ at φ -meson energy in 2008 run and 2.5×10^{31} cm⁻²s⁻¹ at E=850 MeV in 2012.
- Potentially 2×10^{31} cm⁻²s⁻¹ possible at ϕ and 1.6×10^{32} cm⁻²s⁻¹ at 2 GeV.
- More positrons required! VEPP-5 injection complex will supply them in near future.
- The weak-strong simulation clearly predicts better lifetime for lower tunes. Dynamic aperture enhancement required to move working point lower as well as to squeeze β* at low energy.

Weak-strong simulations

Deformation of the weak beam distribution is in question. The simulation model for D.Shatilov's "*Lifetrac*" code:

- 1) 2-period lattice with the chromaticity correction sextupoles, synchrotron oscillations, longitudinal slicing
- 2) Whatever variations, E = 509 MeV and constant β^* = 5 cm, σ_z = 17mm, emittances ~46 48 nm
- 3) Tracking for 10⁴ damping times ($\tau_{x,y}$ ~350,000 turns~28 ms)
- 4) Arc is tracked by P.Piminov's code "Acceleraticum", i.e. the natural chromaticity is correctly simulated, sextupoles (and other machine nonlinearities) can be included. Comparison with the previous "no sextupole" option is available.

Things to be avoided in round colliding beam operation (1)

Detuning from the coupling resonance

Things to be avoided in round colliding beam operation (2)

Detuning from the coupling resonance

Things to be avoided in round colliding beam operation (3)

Large non-compensation of the solenoidal field

Different tune separation caused by solenoids

Things to be avoided in round colliding beam operation (4)

Non-round beta-functions @IP

Things to be avoided in round colliding beam operation (5)

x-y coupling in the arcs

...reveals almost constant specific luminosity! Namely, $L = 1x10^{28} \text{ cm}^{-2}\text{s}^{-1}\text{mA}^{-2}$ Only the beam tails expand at higher tunes and cause limitation of the beam lifetime

@50mA, with sextupoles: tune dependence of the tails

(v1+v2)/2

@50mA, without sextupoles: very weak beam-beam effect (v1+v2)/2v2k_diag011_50ma_s0 v2k_diag012_50ma_s0 v2k_diag0125_50ma_s0 ¹⁴ 0.12 14 0.125 0.11 ₹8 ₹8 Ax AX Ax v2k_diag013_50ma_s0 v2k_diag014_50ma_s0 v2k_diag015_50ma_s0 0.14 0.15 0.13 ₹8 ₹8 ≈8 Π п 16σ Ax Ax Ax

Weak-strong beam-beam simulation by D.Shatilov

arc tunes separation Ax02 by the doublet (D3,F3Ax F1 lenses, beta^{*}x,y kept equal; circular modes and a wider tune split produced by twist 0.79kGs*66.5524cm: Qx = 4.1115, Qy=2.0893,

```
alpha = 0.036, Qs = 0.0028, beta<sup>*</sup>=4.5cm
bunch length: 1.74cm (50kV RF), dE/Eo = 3.5e-04
emittances: Ex = 8.464e-06, Ey = 3.065e-06 cm<sup>*</sup>rad
decrements: dx = 1.905e-06, dy = 1.998e-06, de = 4.318e-06 (per 1/2 turn)
```