Observations of beam-beam effects at the LHC

Giulia Papotti for the beam-beam team
outline

• layout and filling scheme, numerology
 – collision pattern effects
 – potential loss of LD
• luminosity levelling with offset (IP2/8)
• HO tune shifts in MDs
• strong-strong effects: coherent modes and orbit
• scan of crossing angle
 – effect on losses and dynamic aperture
 – PACMAN observations

HO = Head-On
LR = Long-Range
LD = Landau Damping
MD = Machine Development
ppb = protons per bunch
LHC layout

- Large Hadron Collider
 - very big, very cold, very high energy
- 8 arcs (~3km), 8 straight sections
- two-in-one magnet design

- IP2 and 8: injection
- IP6: beam dump region
- IP4: RF and BI
- IP3/7: collimators
- 4 Interaction Points (IPs)
 - IP 1 (ATLAS) and 5 (CMS): high luminosity experiments
 - 2 (Alice) and 8 (LHCb): with luminosity limitations
filling schemes

- motivation: different luminosity targets from the 4 experiments
 - filling schemes tailored to give different number of colliding pairs
 - ATLAS, Alice, CMS are located at the IP symmetry point, LHCb is 11.25 m away
 - techniques of luminosity levelling are operational
- 2.5 ns buckets, $h = 35640$, 25 ns minimum bunch spacing
- for a filling scheme we can chose:
 - bunch spacing: 25ns, 50ns, 75ns, 150ns, or >250ns
 - number of PS batches (1-4, dynamic), number of PSB rings
 - injection bucket

![INJECTION SEQUENCER v0.1.04](image)
example for ring 1

INJECTION RING 1

<table>
<thead>
<tr>
<th>RF Bucket</th>
<th>Nbr Bnches</th>
<th>Bnch Spac [ns]</th>
<th>PS Btchs</th>
<th>Bnch Int [E9]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>381</td>
<td>12</td>
<td>50</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>1041</td>
<td>144</td>
<td>50</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>4481</td>
<td>144</td>
<td>50</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>8121</td>
<td>72</td>
<td>50</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>9061</td>
<td>144</td>
<td>50</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>13421</td>
<td>144</td>
<td>50</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>12061</td>
<td>72</td>
<td>50</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>18921</td>
<td>144</td>
<td>50</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>22361</td>
<td>144</td>
<td>50</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>25861</td>
<td>72</td>
<td>50</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>27741</td>
<td>144</td>
<td>50</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>31161</td>
<td>144</td>
<td>50</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>

4 PS batches at SPS
Injection kicker gap
Abort gap

50 ns, 1380 bunches/ring
reminder on LHC performance

- 2010: inst. luminosity of 2×10^{32} cm$^{-2}$s$^{-1}$
- 2011: did 5.5 fb$^{-1}$
- 2012: did 23.2 fb$^{-1}$
 - ~nominal β^* thanks to excellent aperture and ‘tight’ collimators
 - very bright beams from injectors (note also SPS Q20 optics)

<table>
<thead>
<tr>
<th>parameter</th>
<th>design</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>beam injection energy (TeV)</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>beam energy (TeV)</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>number of bunches per beam (bunch spacing, ns)</td>
<td>2808 (25)</td>
<td>1380 (50)</td>
</tr>
<tr>
<td>β^* at IP1/5 (m)</td>
<td>0.55</td>
<td>0.6</td>
</tr>
<tr>
<td>number of particles per bunch (10^{11})</td>
<td>1.15</td>
<td>1.65</td>
</tr>
<tr>
<td>norm. transverse emittance (μm rad)</td>
<td>3.75</td>
<td>2.5</td>
</tr>
<tr>
<td>colliding beam size (μm)</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>luminosity (cm$^{-2}$s$^{-1}$)</td>
<td>1e34</td>
<td>0.77e34</td>
</tr>
<tr>
<td>stored beam energy (MJ)</td>
<td>362</td>
<td>145</td>
</tr>
</tbody>
</table>
why 50 ns and not 25 ns?

<table>
<thead>
<tr>
<th></th>
<th># bunches</th>
<th>Nbunch (1e11 p)</th>
<th>ε SPS extr(μm)</th>
<th>ε LHC coll (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 ns</td>
<td>2760</td>
<td>1.15</td>
<td>2.8</td>
<td>3.75</td>
</tr>
<tr>
<td>50 ns</td>
<td>1380</td>
<td>1.6</td>
<td>1.7</td>
<td>2.3</td>
</tr>
</tbody>
</table>

• 2012: 50 ns allowed more integrated luminosity while saving on scrubbing time
 - 50 ns beams are brighter from injectors
 • pile-up μ still manageable at 4 TeV (μ~30-35)
 - smaller emittance than for 25 ns allowed squeezing further
 • e.g. β^*_50=60 cm; β^*_25=80 cm;
 - 50 ns are much less affected by ecloud
 • thus less scrubbing time needed (3 days vs 2 weeks)
 • aim for more data for summer conference (July 2012)

• post LS1: 25 ns is default
 - too high pile-up with 50 ns (μ~80-120 vs μ~25-45 with 25 ns)
 • might need levelling even with 25 ns
 - “when” will depend on scrubbing efficiency
 - note: no more non-colliding bunches

Pile-up: number of inelastic collisions per bunch crossing

R. Jacobsson, “Needs and requirements from the LHC physics experiments"
luminosity levelling with offset

- LHCb and Alice limited in pile-up μ
 - LHCb at $\mu \sim 2.5$
 - Alice at $\mu \sim 0.02$
 - ran also with main-satellite collisions (satellites at 25 ns)
- run with separated beams (transverse offset)
 - e.g. LHCb: running at constant $L \sim 4 \cdot 10^{32} \text{ cm}^{-2}\text{s}^{-1}$
 - trimming down the offset in small steps during the fill
 - people worried at first, but no real showstopper found

R. Jacobsson, “Needs and requirements from the LHC physics experiments”

B. Muratori, “Luminosity levelling techniques: implications for beam-beam interactions”

D. Jacquet, “Implementation and experience with luminosity levelling with offset beams”

![Graph of instantaneous luminosity over time](image-url)
collision patterns

- provide different number of colliding pairs to different experiments by shifting the injection bucket
 - examples of filling schemes used in 2012 for physics production
 - 50 ns spaced beams, IP1/5 at $\beta^* = 0.6$ m
 - Alice running with main-satellite collisions, $\beta^* = 3$ m
 - LHCb running with levelling by offset ($\beta^* = 3$ m)
 - scheme 1 to 2: shift 4 injections

<table>
<thead>
<tr>
<th>scheme</th>
<th>total number of bunches</th>
<th>number of colliding pairs</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IP 1 and 5</td>
<td>IP 2</td>
</tr>
<tr>
<td>scheme 1</td>
<td>1380</td>
<td>1331</td>
<td>0</td>
</tr>
<tr>
<td>scheme 2</td>
<td>1380</td>
<td>1380</td>
<td>0</td>
</tr>
<tr>
<td>scheme 3</td>
<td>1380</td>
<td>1377</td>
<td>0</td>
</tr>
</tbody>
</table>
• some bunches in ring 1 were losing very quickly due to instabilities
 – interlock kicked in at ~4e10 ppb, and fills terminated prematurely
 – bunches colliding only in IP8 (levelled by separation)
• changed collision pattern to have head-on collisions in IP1/5 for all bunches
 – need the beam-beam tune spread
 – kept 3 non-colliding for background studies at IP1/5
loss of Landau damping

- single bunches that become unstable
 - visible on losses, sometimes on emittance growth
 - need improvements on instrumentation for instabilities detection

R. Giachino, “Diagnostics needs for beam-beam studies and optimization"
high HO tune shift in MDs

• performed several tests:
 – dedicated MDs on head-on limitations in 2011
 – high pile-up tests in 2011 and 2012

• head-on limit MD (2011):
 – N=1.9e11 ppb, $\varepsilon=1.2$-1.4 μm
 – linear head-on parameter: $\xi=0.02/IP$ and $\xi=0.034$ total
 • design report: $\xi=0.0033/IP$ for (3 IPs, +1 offset)
 – no significant losses nor emittance effects observed
 • tune adjustment needed to avoid emittance blowup: $Q_H=Q_V=0.31$
high pile-up in MDs

- design report: pile-up $\mu \sim 19$
- MD: high pile-up test ($\mu_{max} \sim 31$) in 2011
 - used by experiments to study their own limitations
- MD: high pile-up test ($\mu_{max} \sim 70$) in 2012
 - $N=3e11$ ppb, $\varepsilon=2.2 \ \mu$m
 - very bright single bunches with SPS Q20 optics
 - instabilities observed during ramp and squeeze
 - despite increased chromaticity and longitudinal size
 - one beam only into collisions cleanly
 - would have needed more time and iterations

pile-up: number of inelastic collisions per bunch crossing

G. Trad, “Beam-beam effects with a high pile-up test in the LHC”
coherent modes

- observed during the head-on MDs in 2011
 - with individual bunches
- could measure σ and π modes

X. Buffat, “Coherent beam-beam modes in the LHC”
head-on collisions and losses

• 2010, $\sim0.9\text{e}11$ ppb
• used to have a tune split
 – had problems initially, possibly with coherent modes
 – first: $\Delta Q1: -2.5\text{e}^{-3}; \Delta Q2: +2.5\text{e}^{-3}$
 • lifetime beam 1 worse than beam 2
 – here inverted: $\Delta Q1: +2.5\text{e}^{-3}; \Delta Q2: -2.5\text{e}^{-3}$
 • lifetime beam 2 worse
 – finally tune split removed

expected burn-off: $\sim0.5\text{e}9$/collision after 500 minutes
scans of crossing angle: settings

- crossing angle reduced in steps until losses or lifetime reduction is observed
 - in successive MD sessions, with different β^*, intensity and number of LR interactions
 - record separation for onset of losses
- results used to confirm simulations and predict required separation with future settings

<table>
<thead>
<tr>
<th>scan</th>
<th>β^*</th>
<th>crossing angle</th>
<th>intensity</th>
<th>transverse emittance</th>
<th>bunch spacing</th>
<th>energy</th>
<th>IPs and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>120</td>
<td>1.2</td>
<td>2-2.5</td>
<td>50</td>
<td>3.5</td>
<td>IP1 then IP5</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>120</td>
<td>1.2</td>
<td>2-2.5</td>
<td>50</td>
<td>3.5</td>
<td>1-3 HO coll.</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>145</td>
<td>1.6</td>
<td>2-2.5</td>
<td>50</td>
<td>4</td>
<td>IP1 then IP5</td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
<td>145</td>
<td>1.2</td>
<td>2-2.5</td>
<td>50</td>
<td>4</td>
<td>IP1 then IP5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>145</td>
<td>1.0</td>
<td>3.1</td>
<td>25</td>
<td>4</td>
<td>IP1+IP5</td>
</tr>
</tbody>
</table>
scan of crossing angle: losses

- scan 1
 - 3.5 TeV
 - $\beta^*=1.5$ m
 - xing angle=+-120 μrad
 - $N=1.2e11$ ppb
 - $\varepsilon=2-2.5$ μm
- scan of IP1 only

- 12 non-colliding +
 - 50 ns train of 36

D. Kaltchev, “Analysis of long range studies in the LHC - comparison with the model”

W. Herr, “Long range beam-beam effects and experience in the LHC”
scan of crossing angle: results

- clear dependence on bunch position in batch (anti-PACMAN)
 - dependence on number of head-on collisions highlighted also
- evidence for alternate crossing effectiveness
 - crossing plane: IP1 V, IP5 H (to compensate first order LR effects)
 - scan in IP5 after IP1: lifetime seemed best when separation and crossing angles are equal for the two IPs
- proven that it is a dynamic aperture effect
 - no effect on emittance
 - losses recover if wider crossing restored

emittance from scan 2
scan of crossing angle: 25 ns

• 25 ns have twice the number of LR interactions
 – thus need bigger separation

• LR studies with 25 ns in 2012 (scan 5)
 – crossing reduced simultaneously in IP1/5
 – losses monitored
 • asymmetry B1/B2 not observed with 50 ns and to be understood
 – e-cloud effects visible
orbit effects

- different orbit due to LR collisions
 - fully self-consistent treatment developed
 - e.g. vertical offset in IP1
 - LHC orbit measurement cannot resolve these effects
 - qualitatively verified by ATLAS vertex centroid measurement
 - note the different filling scheme

W. Herr, “Long range beam-beam effects and experience in the LHC”
M. Schaumann, “Observed beam-beam induced orbit effects at LHC”
missing LR deflection

- beam dump of single beam in collisions leads to missing LR deflections
 - consequent single-turn trajectory perturbation of other beam
 - 25ns spacing, 72 bunches, \(\sim 1.1 \times 10^{11} \) ppb, \(\sim 65\mu \text{rad} \) crossing angle
 - B1H perturbation in the arc of \(\sim 230\mu \text{m} = 0.6\sigma \ 3.5\mu \text{m} \cdot \text{rad} \)
- leads with physics beam to beam losses above BLM dump thresholds
 - effect observed throughout 2012
conclusions

• long list of observations
 – LR and HO, orbit, PACMAN, loss of Landau damping, coherent modes, ...

• this was just a teaser, all details will come in the presentations in the next days

• enjoy this workshop!