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Abstract
We present considerations about the transverse beam

transfer functions (BTF) of beams under the influence of
two effects: The strong-strong beam-beam effect and the
influence of a Gaussian electron lens. The BTF are inves-
tigated using two methods: BTF excitation is simulated in
a particle-in-cell (PIC) code. The BTF model is verified
using a known analytic expectation. Analytic expectations
for BTF of beams under a stationary electron lens are de-
rived by extending BTF from the formalism of Berg and
Ruggiero. Finally we compare the analytic BTF results
for a stationary Gaussian lens to both the PIC simulation
for split tune conditions and to PIC simulations for a beam
influenced by an electron lens. We conclude that the formal-
ism represents the electron lens well and can be applied to
a limited extend to the beam-beam effect under split tune
conditions. The analytic formalism allows to recover the
strength of an electron lens by means of fitting and can give
clues regarding the strength of the beam-beam effect under
split tune conditions.

RECONSTRUCTION OF TUNE SPREAD
FROM BTF

For a long time there has been a desire at BNL to recover
the beam beam parameter and with it the tune spreads from
BTF of beams undergoing the beam-beam effect. Recently
this desire has been intensified by the construction and in-
stallation of the electron lens [1]. Normally the machine is
run in conditions with the two rings tuned to identical or
near-identical tunes. We refer to these conditions as nor-
mal conditions. Under these circumstances, the coherent
beam-beam modes often dominate the BTF. When observed,
the distance between π and σ modes can be used to deter-
mine the beam-beam parameter and with it one can estimate
the tune spread. For diagnosing the tune spread due to the
electron lens we can not expect π and σ modes outside the
incoherent spectrum: The electron beam is dumped after
usage and not fed back into the system. However running
the electron lens will lead to a tune spread similar to the one
caused by the beam-beam effect (but with a positive tune
shift). This tune spread in turn will lead to a deformation of
the betatron peak. We would like to be able to recover the
strength of the electron lens from this deformation in the
absence of beam-beam interactions.

A similar situation can be hoped for in runs with split
tunes. We talk about split tunes when the tunes are, unlike
normal conditions, offset in the two rings, for example dur-
ing the 2012 split tunes run they were typically separated
by about 0.04 and located to either side of the 7/10 reso-
nance line. In this case the coherent lines can move into

the incoherent spectrum where they can be landau-damped.
The resulting beam heating has been observed in measure-
ment [2]. In simulation, the incoherent spectrum of the
beam-beam effect of split tunes leads to BTF similar to
those of an electron lens. However due to the opposite sign
of the force of the beam-beam and the electron lens the
betatron peak is located on the other side of the lattice tune.

When talking about BTF we should specify what we
mean exactly: The BTF system at RHIC uses the direct
diode detection technique [3] developed at CERN together
with a coherent excitation signal fed onto the beams. The
complex response amplitude as a fraction of excitation am-
plitude gives the BTF at the frequency of the excitation.
The excitation signal is swept over a range of frequencies
around the fractional tune to obtian the BTF as a function of
frequency. Commonly the complex BTF is separated into
phase and amplitude and the result is shown as a function
of frequency.

BTF OF COASTING BEAMS
The BTF of coasting beams have been studied in detail

in the past as they for example give information on the sta-
bility limits for beams under space charge. Examples of
such studies can be found in [4, 5]. We think that the ma-
chine conditions in RHIC during pp-operation allow us to
apply coasting beam considerations for the bunched beams
in RHIC: The synchrotron period with the 28 MHz radio fre-
quency (RF) system and the time used to take one frequency
sample in the baseband-Q (BBQ) BTF system are about the
same (∼30 ms). For this reason from the point of view of the
BTF measurement, the beam might be expected to resemble
a coasting beam. Longitudinal motion is very slow on the
timescale of the BTF measurement. Simulations include
chromaticity and synchrotron motion. It will be shown later
that they agree with a coasting-beam description.

Application to the BTF of beams under beam-
beam or an electron lens

To account for an electron lens or a beam-beam effect
where the coherent modes lie inside the incoherent spectrum,
we use the theory developed by Berg and Ruggiero in [6].
We only have to extend the BTF they give by replacing the
tune change due to an octupole with the tune change due to
a Gaussian lens. The BTF by Berg and Ruggiero reads :

R(Ω) =

∫ ∞
0

∫ ∞
0

1

Ω− ωx (Jx, Jy)

Jxdψx
dJx

ψydJxdJy

(1)
Wherein Jx and Jy are the transverse action angle variables,
ψx, ψy the distribution functions in action angle variables,
separated into the contribution of x and y direction and



ωx(Jx, Jy) betatron frequency as a function of these vari-
ables. Ω is the frequency at which the BTF is calculated.

For the distribution functions ψx, ψy we use the distribu-
tion of a Gaussian transverse distribution in action angle
variables as found for example in [8] (we can also simply
split the ψ0 we find in [6] to get ψx, ψy). We also need the
formula for the single particle tune shift due to a Gaussian
lens ∆Qlens which as a function of the action-angle am-
plitudes of the particles Jx,y and the peak tune shift ∆Q0

reads [4]:

∆Qlens = ∆Q0
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dz.

(2)
Because the Bessel functions are slow to evaluate when
one tries to calculate eq. 1 numerically, instead of this ana-
lytic expression we use a well-behaved replacement that is
friendlier for numerics and was developed for the treatment
of space charge in [4]. Therein with ax,y =

√
2Jx,y the

approximation for our ∆Qlens reads:

∆Q0

192− 11ax − 18
√
axay + 3a2

y

192− 11ax − 18
√
axay + 3a2

y + 36a2
x + 24a2

y

(3)
For the longitudinal distribution we assume a Gaussian mo-
mentum spread with the tune shift according to chromaticity
resulting in a tune deviation ∆Qchrom. It can be taken into
account by modifying R(Ω) to also include the tune shift
due to chromaticity, the resulting R(Ω) reads:∫ ∞
−∞

∫ ∞
0

∫ ∞
0

1

Ω− ωx (Jx, Jy, p)

Jxdψx
dJx

ψypdJxdJydp

(4)
where ψyp = ψy(y)ψp(p) contains the combined densities
in the vertical and momentum plane. The resulting ωx reads:

ωx(Jx, Jy, p) = ω0 (Q0 + ∆Qlens(Jx, Jy) + ∆Qchrom(p))
(5)

with ω0 the revolution frequency, Q0 the lattice tune and
∆Qchrom(p) the tune shift due to chromaticity. The cro-
maticity usually plays a minor role for the BTF of realistic
beams because RHIC runs at low chromaticity.

SIMULATION MODEL
For the investigation of BTF of beams undergoing the

beam-beam effect in RHIC, a simulation model was imple-
mented on top of the particle tracking code PATRIC [9]. For
the tracking between interaction points (IPs), matrices from
madx are used. The translation between IPs is done by one
single matrix multiplication with the linear one-turn map
computed using the one-turn map on the 2012 100 GeV
polarized proton lattice [10]. For synchrotron motion the
respective parts of the madx result are ignored and replaced
by a more versatile model which is present in the code and
allows to take into account different RF waveforms. One
instance of the code is run for each of the typically six (in
the case of two IPs) or two (in the case of one IP) cou-
pling bunches. The beam-beam interaction is taken into

account by exchanging the two-dimensional electric fields
between the bunches at the interaction points and kicking the
particles accordingly. The fields are calculated using a two-
dimensional fast-Fourier-transform-based Poisson solver
with open boundary conditions [11]. The beam-beam im-
plementation reproduces the expected behaviour, especially
the π an σ modes are found at the expected positions of
Q and Q − λyokoya · ξbb with Q the tune, ξbb the beam-
beam parameter and λyokoya the Yokoya factor [12]. The
maximum single particle tune shift in simulation equals the
beam-beam parameter as expected.

BTF Implementation

The BTF is implemented as follows: A particle ensemble
of typically between 105 and 107 macroparticles is initial-
ized as a matched Gaussian distribution and left coasting for
a few thousand turns to equilibrate possible matching errors.
After this initial equilibration the equilibrium distribution is
cached. Then, a coherent excitation is carried out by adding
a sinusoidal excitation signal a(t) = sin(ωt) to to the mo-
mentum component of the particle vectors at each passing
of the exciter. Because the excitation frequency is chosen
around the fractional tune, it is assumed that a whole bunch
sees the same excitation signal. After each turn the trans-
verse position of the center of charge of the beam and the
excitation signal amplitude is stored. In post-processing the
BTF is calculated as the fraction of the complex amplitudes
of the response and the exciting signal. The amplitudes are
determined using the discrete Fourier transformation (DFT)
at the chosen excitation frequency. After each excitation
frequency the PIC-code reinitializes with the equilibrium
particle distribution to reduce transient modes. To make
sure we look primarily at the steady state of the excited
beam, not at the transients, the first few hundred turns at the
excitation frequency are disposed of.

In the case of multiple bunches in one ring, the BTF
excitation signal takes into account the phase between the
bunches to replicate the situation in the real machine where
all bunches are excited by the same excitation signal.

Test of BTF model Before considering BTF of more
complex situations we needed to validate our simulation
model to make sure we agree with known analytic results.
A good benchmark is the BTF of a beam with a Gaussian
velocity profile and a tune spread solely due to chromaticity.
We consider the single particles as harmonic oscillators
around their betatron frequency ω. In the derivation we
follow [8]: A harmonic oscillator driven off-frequency at a
frequency of Ω carries out a beating at an amplitudeAwhich
is proportional to 1

ω2−Ω2 . To determine the response of an
ensemble of harmonic oscillators to a driving frequency
Ω the intuitive approach is to integrate amplitude over the
density ψ(ω) of eigenfrequencies. To make things simpler,
A can be approximated by 1

2ωβ(ω−Ω) where ω ' Ω ' ωβ
(which is the case around the betatron lines). Taking out
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Figure 1: Comparison of amplitude and phase of the analytic
prediction for the BTF of a beam with Gaussian tune spread
(line) and the PIC BTF simulation results (points). The
simulation agrees well with analytic predictions. u is the
normalized frequency coordinate given in eq. 7.

constant factors the BTF behaves as

R(Ω) ∝
∫

1

ω − Ω
ψ(ω)dω (6)

This equation has an analytic solution for different forms
of frequency distributions [8]. We look at the result for a
Gaussian frequency spread. The normalized frequency u
can be defined as a function of the mean particle betatron
frequency ω, the driving frequency Ω and the frequency
width of the distribution ∆ω via the equation:

u =
ω − Ω

∆ω
. (7)

Then real and imaginary parts of the BTF are proportional
to f and g below [8]:

f(u) =

√
2

π
e−u

2/2

∫ ∞
0

dy

y
e−y

2/2 sinh(uy) (8)

g(u) =

√
π

2
e−u

2/2 (9)

The analytic BTF compares well to our PIC code as shown
on example data in Fig. 1. It is also noteworthy that eq. 4
simplifies to eq. 6 in absence of the lens.

Tune Distribution
The tune distributions in simulation are computed by run-

ning the simulation without BTF excitation for 2000-8000
turns. The particle coordinates are stored for a subset of
typically 104-105 particles. In postprocessing DFT is used
to find the peak of the oscillation frequency. The analytic
tune distributions are computed by numerically evaluating
particle density over the distribution and binning the result-
ing fractions into bins depending on the corresponding tune
change according to eq. 2.

Electron lens model
To model the electron lens the code uses the analytic

expressions for the fields of a round Gaussian beam to kick
the particles at one of the interaction points. The intensity
of the field is adjusted to correspond to a chosen beam-beam
parameter. The electron lens in simulation can be run as a
positron lens by simply changing the sign of the beam-beam
parameter, which we did most of the time to be able to easily
compare between BTF with stationary Gaussian lens and
BTF with split tunes.

SIMULATION STUDY
First we ran simulations of of a beam undergoing an in-

teraction solely with a Gaussian lens. At the beginning it
appeared as though the BTF from simulation and the ana-
lytic expectation were in disagreement, the first simulations
for both split tunes and electron lens type configuration
showed a double peak structure not present in the analytic
expectation. However as shown in a sweep of excitation am-
plitudes in Fig. 2 on the example of a split tunes simulation,
a significant reduction in exciter amplitude led to results
in which no double peaks were observed any more. After
amplitude reduction, the simulation results for a Gaussian
lens were in good agreement with the analytic formula from
eq. 4.

Recovery of the beam-beam parameter
To test whether fitting to measured BTF of a beam inter-

acting with an electron lens would enable us to recover the
beam-beam parameter, we ran simulations of beams with
Gaussian lenses of different beam-beam parameters. We
fitted the analytic formula for the BTF to simulated BTF. Be-
cause the evaluation of the analytic BTF is rather costly, we
calculate analytic BTF in MATHEMATICA for a reasonable
range of parameters and use an interpolating function to fit
the simulation data. An example fit is shown in Fig. 3. The
beam-beam parameters to which the fits converge lie within
three percent of the actual beam-beam parameter chosen for
the simulation. Our test set consisted of simulated BTF with
beam-beam parameters between 0.0025 and 0.0145.

Split Tune conditions
We conducted part of the simulation study on split tune

conditions because during the current run the hopes for
a running electron lens are not high. The BTF of beams
under split tune conditions looked similar to the analytic
expectation for a defocussing Gaussian lens.

We ran simulations for split tune conditions for the same
range of beam-beam parameters as we did previously for
the electron lens. Again we tried to recover the beam-beam
parameters using our fit routine. For the split tunes we ob-
served a slight deviation of the analytic result from the BTF
even though overall agreement was visually still acceptable
as shown in Fig. 4. The beam-beam parameters recovered
from the fits are given in the figure and were slightly un-
derestimating the actual beam-beam parameter used in the
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Figure 2: Comparison of numeric BTF (dots) from PIC
simulation with split tunes and one IP to the analytic expec-
tation (line). Normalized amplitudes left, phases in units
of π right. The excitation amplitude (the amplitude of the
sinusoidal signal added to the x′ component of the particle
vector) is given left of the plots. We see good agreement for
medium amplitudes. For higher amplitudes we observe a
deviation, possibly due to particles in the tails of the distri-
bution or due to coherent modes. For lower amplidudes the
numerical noise is higher than the signal but can be reduced
by increasing particle number.
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Figure 3: Comparison of analytic expectation (orange) with
simulation amplitude (blue dots) and phase (red dots) for a
Gaussian lens. We see very good agreement.
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Figure 4: BTF from PIC simulations with 1 IP and split
tunes (dots) in Amplitude (left) and phase (right) for dif-
ferent beam-beam parameters in comparison with fits of
the analytic BTF. The result of the fit is given in the indi-
vidual plots. We see good agreement between the fits to
phase and amplitude. Note that the fit results seem to scale
linearly with the beam-beam parameter chosen in the simu-
lation but are slightly lower. The dependence of fit result on
simulation input is shown in fig. 5.
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Figure 5: Relation betwen ξbb from fit to BTF simulations
of split tunes and from simulation input. The dependence is
approximately linear for our range of parameters.

simulation. We blame this on the coherent modes to be
expected within the incoherent spectrum and possibly lead-
ing to a narrowing of the peak. A plot of the beam-beam
parameter from the fit over the actual beam-beam parameter
from the simulation can be found in Fig. 5. The relation
between fit result and actual beam-beam parameter appears
to be scaling linearly with a factor of about 0.8. This result
might however be dependent on the tune Splitting.

Comparison with measurement
The BTF that are available of split tunes measured in

the machine do unfortunately not all replicate the analytic



0.7100.7150.7200.7250.7300.7350.7400.7450.75010-2

10-1

A
m

p[
a.

u.
]

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Ph
as

e 
[π

]
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the analytic fit.

expectation. There may be several reasons for that. Firstly
the split tunes fills were full machines (instead of the simu-
lation situation of only 2 or 6 coupling bunches). During the
2012 run the BTF system was measuring the center of mass
motion of all the bunches in the machine and combining
them into a single BTF. For conditions with differing bunch
parameters this may lead to a deformation of the signal
so that we cannot expect it to follow our clean simulation
data anymore. Furthermore the coherent modes in the in-
coherent tune distribution can lead to a deformation of the
bunches and a resulting deformation of the BTF not cov-
ered by our assumption of round Gaussian beams. For this
reason we decided to look at the BTF of the best-behaved
among the split tunes fills. Best-behaved means in this case:
no multipeak-structures in the individual planes, low heat-
ing compared to the other fills, rather round beams. The
beams were however still slightly assymetrical (normalized
6 σ emittances: yellow: εx = 20, εy = 17.5 and blue:
εx = 22.5, εy = 21.5) at an average of 1.8·1011 particles
per bunch. Nevertheless we tried to apply the fit algorithm
for round beams demonstrated above on simulated BTF. In
the horizontal plane according to the beam properties we
would expect a beam-beam parameter of 0.012-0.014. We
found a reasonable approximation of the measurement by
the analytic result. The beam-beam parameters obtained
from the fits to yellow and blue horizontal BTF measure-
ment data are ξfit,yellow = 0.012 and ξfit,blue = 0.012 when
one takes into account the factor of 0.835 between ξfit and ξ
obtained from simulation. Furthermore the fits to amplitude
and phase deviate only by a few percent. In the vertical
plane the peaks looked distorted on which basis we reason
that here other effects might be at work. On top of that, in
the vertical plane coherent modes were observed for some
fills. Example fits in the horizontal plane can be found in
Fig. 6.

CONCLUSION AND OUTLOOK
Currently our analytic model is restricted to round Gaus-

sian beams, as is typically the case in RHIC. However it
should be feasible to generalize the analytic theory for ar-
bitrary aspect ratios by adjusting ∆Qlens. In absence of an
electron lens a possible test scenario for the fitting method
could be found in weak-strong beam-beam interactions,
where strong beam could be modelled as the the electron
lens and the measurement would be done on the weak beam.
For the 2013 run the BTF system has been upgraded and is
now able to measure BTF of single bunches which would
enable running different intensity strong-weak BTF in one
fill. Furthermore once the electron lenses are up and running
we can test whether the BTF of an electron lens agrees with
the BTF according to eq. 4 as is to be expected according
to our simulation. In this case we would be able to give a
good estimate for the strength of the electron lens from the
BTF alone.
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