

NLO+PS FOR TTBAR+X WITH AMC@NLO

Rikkert Frederix University of Zurich

Tools for precision and discovery physics with top quarks, CERN, July 17-18, 2012

AMC@NLO

- Automatic version of the "hand-written" MC@NLO
 - Not a library of processes, but a meta code that writes a program to generate events
 - # Just like MadGraph, but including NLO corrections
 - Limited only by CPU power
 - Rule of thumb: processes that run quickly on a single computer at LO, run in a reasonable amount of time on a computer cluster at NLO

NLOWPS: INGREDIENTS FOR AUTOMATION

- The three ingredients to NLOwPS event generation are
 - Wirtual amplitudes: compute the loops automatically in a reasonable amount of time
 - * How to deal with infra-red divergences and phase-space integration in an efficient way: virtual corrections and real-emission corrections are separately divergent and only their sum is finite (for IR-safe observables) according to the KLN theorem
 - The matching of these processes to a parton shower without double counting
- All three implemented in the automatic aMC@NLO package

MATCHING TO THE PARTON SHOWER

MATCHING TO THE PARTON SHOWER

- * There is double counting between the real emission matrix elements and the parton shower: the extra radiation can come from the matrix elements or the parton shower
- There is also an overlap between the virtual corrections and the Sudakov suppression in the zero-emission probability

MC@NLO PROCEDURE

Double counting is explicitly removed by including the "Monte Carlo subtraction terms"

Rikkert Frederix, University of Zurich

THE aMC@NLO CODE

http://amcatnlo.cern.ch

Rikkert Frederix, University of Zurich

TTBAR + HIGGS

- * For light Higgs bosons the dominant decay mode is to b quark pairs
- The largest coupling to SM particles is to the top quark
- Simplest tree-level process that combines the two, pp → t tbar H (with H → b bbar), is still very channeling to observe at the LHC
 - Small rates (0.1 (0.7) pb at $\sqrt{s} = 7$ (14) TeV for a m_H=120 GeV)
 - Large backgrounds from top pair production + (b) jets
- Precise description of the signals and the backgrounds can give a significant contribution to the success of any given analysis
- Use the aMC@NLO to describe the signal process

- Three scenarios
 - I) scalar Higgs H, with $m_H = 120 \text{ GeV}$
 - II) pseudo-scalar Higgs A, with $m_A = 120 \text{ GeV}$
 - III) pseudo-scalar Higgs A, with $m_A = 40 \text{ GeV}$
- SM-like Yukawa coupling, $y_t/\sqrt{2}=m_t/v$
- * Renormalization and factorization scales $\mu_F = \mu_R = \left(m_T^t m_T^{\overline{t}} m_T^{H/A} \right)^{\frac{1}{3}}$ with $m_T = \sqrt{m^2 + p_T^2}$ and $m_t^{pole} = m_t^{\overline{MS}} = 172.5 \text{ GeV}$
- W Note: first time that pp \rightarrow ttA has been computed beyond LO

IMPACT OF THE SHOWER

- Three particle transverse momentum, p_T(H/A t tbar), is obviously sensitive to the impact of the parton shower
- * Infrared sensitive observable at the pure-NLO level for $p_T \rightarrow 0$
- * aMC@NLO displays the usual Sudakov suppression
- At large pT's the two descriptions coincide in shape and rate

HIGGS PT

- Transverse momentum of the Higgs boson
- Lower panels show the ratio with LO (dashed), NLO (solid) and LO+PS (dotted)
- Corrections are small and fairly constant
- At large p_T, scalar and pseudoscalar production coincide: boosted Higgs scenario
 [Butterworth et al., Plehn et al.] should work equally well for pseudoscalar Higgs

BOOSTED HIGGS

- Boosted Higgs: pT^{H/A} > 200 GeV
- Transverse momentum of the top quark
- Lower panels show the ratio with LO (dashed), NLO (solid) and LO+PS (dotted)
- Corrections compared to
 LO(+PS) are significant
 and cannot be approximated
 by a constant K-factor

TTH DECAYED

[RF, Frixione, Hirschi, Maltoni, Pittau & Torrielli, arXiv:1104.5613]

- * Two definitions of the B hadron pair in these plots (assuming 100% btagging efficiency)
 - a) hardest pair in the event
 - b) decay products of the Higgs (uses MC truth)
- A cut on the p_T of the Higgs improves the selection of B hadrons from the Higgs decay

Rikkert Frederix, University of Zurich

TTBAR+W

Sample generated overnight. Plot made this morning

TTBAR+GAMMA

Sample generated overnight. Plot made this morning

* That is the power of automation. Code and event generation during the night, phenomenology during the day...

PRODUCTION + DECAY

- What about the decays of the top quarks?
- ^{*} 0th-level solution: Let the parton shower program do the decays. Lacks spin correlations...
- Simple solution: most important is to include spin correlations between production and decay --> "DecayPackage" (next slides)
- ** NLO solution: Include NLO corrections in production and decay independently. Non trivial to automate
- Complete solution: generate the full process ("pp -> WWbb") at NLO accuracy
 - Includes decays, spin-correlation, off-shell, resonant and non-resonant effects at NLO accuracy
 - Requires "complex mass scheme" (or something similar) to deal with intermediate resonances
 - Computationally very expensive: only viable when extremely highprecision is a must and/or non-resonant contributions are enhanced due to analysis cuts

Rikkert Frederix, University of Zurich

In collaboration with Pierre Artoisenet and Robert Rietkerk

Wish list:

- For any event sample (with unweighted events -- LO or MC@NLO), include the decay of any of the final state particles
- * Keep all spin correlations between production and decay
- Generate unweighted events
- ** Already available in MC@NLO for ttbar and single top production [Frixione, Laenen, Motylinski e3 Webber, hep-ph/0702198]

In collaboration with Pierre Artoisenet and Robert Rietkerk

*** How to get this:**

- Read event
- Generate decay kinematics
- % Reweight event by the ratio $|M_{Production+decay}|^2 / |M_{Production}|^2$
 - ** or, better, do a (secondary) unweighting against
 |M_{Production+decay}|²/ |M_{Production}|²:
 - Generate many decay momenta until:

 $|M_{Production+decay}|^2 / |M_{Production}|^2 > Random# \times UpperBound(|M_{Production+decay}|^2 / |M_{Production}|^2)$

Rikkert Frederix, University of Zurich

In collaboration with Pierre Artoisenet and Robert Rietkerk

What we need:

- Matrix elements for production and production+decay processes
- Upper bound on ratio of |M_{Production+decay}|²/ |M_{Production}|² to be able to unweight the events
- Generate decay kinematics

In collaboration with Pierre Artoisenet and Robert Rietkerk

Matrix elements:

- For each event, read the particles and check if the corresponding matrix elements were already generated
- If not: generate the tree-level production and production+decay matrix elements using madgraph5
- Solution Use the "decay chain syntax" for the production+decay matrix elements to only generate diagrams consistent with the decay process

In collaboration with Pierre Artoisenet and Robert Rietkerk

- $W Upper bound on |M_{Production+decay}|^2 / |M_{Production}|^2$:
 - The upper bound is independent from the production process and kinematics! [Frixione, Laenen, Motylinski & Webber, hep-ph/0702198]
 - * For the first 5 events in the event file, use several 1000 decay PS points and compute |M_{Production+decay}|²/ |M_{Production}|² to determine the maximum weight found
 - To be on the safe side, the variation in the maximum weights found in the 5 events is added twice to the maximum weight
 - When looping over all events, use this maximum weight to do the unweighting of the decay kinematics

In collaboration with Pierre Artoisenet and Robert Rietkerk

Spin correlations in aMC@NLO events:

- * For most observables, spin correlations have a tiny effect: including them at tree level is enough
 - # H-events: use the "real-emission matrix elements" to reweight them
 - S-events: use Born matrix elements to do the reweighting
- This guarantees NLO accuracy for observables related to the production process (e.g. p_T of the top quark)
- This includes all spin correlations (apart from the non-factorizable correlations of virtual origin) in the production+decay process

In collaboration with Pierre Artoisenet and Robert Rietkerk

**** Validation plots:**

Frixione, Laenen, Motylinski & Webber, hep-ph/0702198

aMC@NLO+DecayPackage

Top pair production

In collaboration with Pierre Artoisenet and Robert Rietkerk

Walidation plots:

Frixione, Laenen, Motylinski & Webber, hep-ph/0702198

aMC@NLO+DecayPackage

* Top pair production

In collaboration with Pierre Artoisenet and Robert Rietkerk

Walidation plots:

t-channel single top production

In collaboration with Pierre Artoisenet and Robert Rietkerk

leptonic top decays

貒

In collaboration with Pierre Artoisenet and Robert Rietkerk

**** Possible improvements:**

- Better handling of the processes: e.g. if there is an intermediate resonance written in the event file, only generate the matrix elements conform that resonance
- Speed-up: speed for NLO processes is satisfactory, for LO it slower than the direct integration of the matrix elements including decay
- Include Breit-Wigner effects: requires "reshuffling" of the production process momenta. PDF effects to be included here?

AMC@NLO FOR BSM

- * Two extra complications:
 - Automatic virtuals: OPP method only gets part the "rational contributions" and no UV-renormalization counterterms. Need special diagrams to complete them. Use FeynRules to generate the corresponding Feynman rules automatically
 - On-shell resonances appearing in the real-emission contributions should be avoided/subtracted. Similar problem of double counting (already removed within MG5) in ME+PS matching [Alwall, Maltoni, de Visscher]. Double counting also subtracted in the MadGolem project [Concalves-Netto, Lopez-Val, Mawatari, Plebn, Wigmore]

SUMMARY

- * aMC@NLO ("automatic MC@NLO") can be used to generate events for any SM process at NLO accuracy (limited only by CPU power)
 - * ttbar+Higgs, ttbar+gamma, ttbar+W, ttbar+... are all straightforward to produce. Time can be spend on studying the phenomenology instead of coding and or performing the calculation
- DecayPackage: efficiently including spin correlations between production and decay of heavy particles
- Code is currently being rewritten in the madgraph5 framework and will become available this year
- Website: http://amcatnlo.cern.ch