tT asymmetry at the Tevatron

J. Huston Michigan State University

tT charge asymmetry

- Dominant contribution to charge asymmetry originates from qQ annihilation, namely from asymmetric piece in interference between Born amplitude and oneloop corrections
- Involving an IR divergence that is cancelled in the sum of real and virtual NLO corrections
- The virtual and real corrections to the asymmetry have opposite signs
- At the Tevatron, this charge asymmetry shows up as a forward-backward asymmetry
 - measure in $\Delta y = y_t y_T$
- Significant EWK corrections
 - AFB (NLO QCD)*1.26 (EWK)
 - Kuhn-Rodrigo, Hollik-Pagani, Manohar-Trott

Asymmetry

- Expect a roughly linear increase in asymmetry with m_{tT} and Δy (cosθ*)
- Asymmetry is stable to threshold corrections from soft gluons differential behavior (Almeida et al., PRD87, 014008, 2008)

- For comparisons in CDF, we use the Powheg implementation of tT production (which gives a compatible asymmetry to that from MCFM) multiplied by the EWK factor of 1.26
 - note that this effectively is using NLO in as in both the numerator and denominator (which I believe is best, and at least is well-defined)
 - you are free to compare the data to any other prediction

Measurement

$$q\overline{q} \to g \to t\overline{t} \to (W^+b)(W^-\overline{b}) \to (l^+\upsilon b)(q\overline{q}\overline{b}) \to l^+ + E_T + 4j + \ge 1 btag$$

- I will be discussing mostly results from an analysis of 8.7 fb⁻¹ from the Run II data set from CDF (2498 events, factor of 2 greater than last analysis)
 - almost full Run II data set
- A_{FB} in ∆Y, m_{tT}, p_T (of tT system)
- Multi-bin corrections to parton level
- Lepton-only asymmetry
- A few words about dilepton asymmetry

- lepton (e/ μ) $E_t/p_t > 20 \text{ GeV}$ (/c)
- missing E_t > 20 GeV
- .g.e. 4 jets E_t > 20 GeV
 - at least one b-tagged jet
- H_t > 220 GeV reduces QCD background
- 2498 events bkg = 505±123

Situation as of last summer

prior measurements

inclusive

$CDF l+jet 5.3 fb^{-1}$	15.8 ± 7.4		
CDF DIL 5.1 fb^{-1}	42.0 ± 16.0		
CDF combo	20.1 ± 6.7		
D0 l+jet 5.4 $\rm fb^{-1}$	19.6 ± 6.5		
informal combo	19.8 ± 4.7	NLO	6.6

differential (at bkg subtracted data level)

	$M < 450 \text{ GeV}/c^2$	$M \ge 450 \text{ GeV}/c^2$	$ \Delta y < 1.0$	$ \Delta y \ge 1.0$
CDF l+jets	-2.2 ± 4.0	26.6 ± 6.2	2.9 ± 4.0	29.1 ± 9.0
D0 l+jets	7.8 ± 4.8	11.5 ± 6.2	6.1 ± 4.1	21.3 ± 9.7
informal combo	2.8 ± 3.3	19.0 ± 4.4	4.5 ± 2.8	25.2 ± 6.6
NLO + EWK	1.5 ± 0.3	4.9 ± 1.0	1.6 ± 0.3	7.2 ± 1.4

A_{fb} of the Top Quark July 2011 V. Ahrens et. al., arXiv:1106.6051v1 (2011) (** submitted to a journal) W. Hollik and D. Pagani, (* preliminary) arXiv:1107.2606 (2011) CDF LJ 0.158 0.074 (0.072 0.017) (5.3 fb^{-1}) 5.8+/-5.1(stat)+/-1.3(syst)% new D0 dilepton CDF DIL* 0.420 0.158 (0.150 0.050) (5.1 fb^{-1}) CDF combined* 0.201 0.067 (0.065 0.018) (] stat] syst) D0 LJ** 0.196 0.060 +0.018 (5.4 fb^{-1}) -0 -0.4 -0.2 0.2 0.4 0.6 0.8 A_{fb}

Powheg modeling

- Use Pythia for showering
- Provides a good description of the data set
- Agreement, where expected, with MC@NLO and MCFM

• CDF b-tag background model

CDF Run II Preliminary L = 8.7 fb^- $\,$

	≥ 4 je	ets
W+HF	$241 \pm$	78
Non-W	$98~\pm$	51
W+LF	$96~\pm$	29
Single Top	$33 \pm$	2
Diboson	19 \pm	3
Z+Jets	$18 \pm$	2
Total Background	$505~\pm$	123
$tar{t}$ 7.4pb	$2037~\pm$	277
Total Prediction	$2542~\pm$	303
Data	2498	

80

100 120 140 160 180 200

E,

0

20

40

60

Top reconstruction

- Require lepton + missing E_T + 4 jets (>=1 b tag)
- Apply a jet-parton match and $p_z(v)$ solution using simple constraints, choosing best χ^2
 - ♦ m_W=80.4 GeV
 - m_t=172.5 GeV
 - b-tag=b jet
 - float jet p_T within errors
- The sign of the lepton gives the sign of the top
- Good agreement between Powheg and data
 - note for p_T of the tT system

Top reconstruction

- Distribution of χ^2 well-described over 2 orders of magnitude
 - and χ^2 is not a real χ^2 in the sense that expect 1 for a good fit

Asymmetry in presence of cuts

The cuts applied for the experimental analysis have the effect of decreasing the measured asymmetry.

Rap	idity ra	ange	$A_{\rm FB}^{\rm no\ cuts}({ m NLO})$	$A_{\rm FB}^{\rm cuts}$ (NLO production)	$A_{\rm FB}^{\rm cuts}({ m NLO~prod}+{ m decay})$
i	nclusiv	e	$0.065\substack{+0.028\\-0.014}$	$0.044\substack{+0.017\\-0.010}$	$0.045\substack{+0.021\\-0.011}$
0 <	$ \Delta y $	< 0.5	$0.036\substack{+0.020\\-0.003}$	$0.017\substack{+0.005\\-0.005}$	$0.015\substack{+0.009\\-0.004}$
0.5 <	$ \Delta y $	< 1	$0.062\substack{+0.013\\-0.028}$	$0.052\substack{+0.019\\-0.012}$	$0.053\substack{+0.025\\-0.011}$
1 <	$ \Delta y $	< 1.5	$0.101\substack{+0.060\\-0.006}$	$0.086\substack{+0.035\\-0.017}$	$0.092\substack{+0.039\\-0.021}$
	$ \Delta y $	> 1.5	$0.193\substack{+0.058\\-0.036}$	$0.142\substack{+0.059\\-0.034}$	$0.149\substack{+0.062\\-0.036}$

Table 5. Predictions for the top forward-backward asymmetry in the lepton+jets channel at the Tevatron, computed without applying any experimental cuts $(A_{\rm FB}^{\rm no\ cuts})$ and also when using the cuts described in the text $(A_{\rm FB}^{\rm cuts})$. The uncertainties are obtained by varying the scale in the range $(m_t/2, 2m_t)$.

John Campbell and Keith Ellis; arXiv:1204.1513

Reconstructed level

- Expect an asymmetry due to NLO with EWK corrections (plus backgrounds) of 2.6%
- Observe 6.6+/-2.0%
- When sample is separated according to charge of lepton, asymmetries are equal within uncertainties (as expected)

Reconstructed level: mass dependence

- Look at tT masses below and above 450 GeV
- Low mass sample has asymmetry consistent with SM
- High mass sample has A_{FB}=16.0+/-3.4%, expect 4.4%
- No neural net needed here; asymmetry is clearly visible even at reconstructed level

CDF Run II Preliminary L = 8.7 fb⁻¹

Background subtraction

- Now subtract background from sample
- A_{FB}(data)=8.5+/-2.5%
 - A_{FB}(predicted)=3.3%

CDF Run II Preliminary L = 8.7 fb⁻¹

Mass dependence

 Look at mass dependence for backgroundsubtracted data

Mass dependence

CDF Run II Preliminary L = 8.7 fb⁻¹

- Look at mass dependence for backgroundsubtracted asymmetry (N(Δy>0)-N(Δy<0)
- SM predicts increase of asymmetry with mass, but not with slope seen in data

Mass, Δy dependence

- Mass, ∆y dependence, in data and in theory, welldescribed by linear ansatz
- ...but with different slopes for data and theory
- My words: like QCD on steroids
- George Sterman's words: like QCD, only more so

Correct to parton level

- Must account for
 - 1. finite detector resolution
 - 2. smearing due to incorrect reconstruction
 - 3. effect of selection cuts
 - 4. geometric acceptance
 - 5. trigger rate
 - 6. finite statistics
- First unsmear to correct for 1,2 and 6, and then correct acceptance for 2,4 and 5
 - unsmearing tends to increase asymmetry by removing dilution from misreconstructed events
 - acceptance is asymmetric in ∆y, with backward events passing selection cuts more often than forward events

Parton level

- After correcting to parton level, can again calculate A_{FB}, and again fit linear ansatz
- Similar behavior as before correction, but steeper slopes, for both data and theory

CDF Run II Preliminary L = 8.7 fb⁻¹

Parton level

- Now as a function of tT mass
- Again, linear ansatz works well for both data and theory
- And again, we have QCD on steroids

Transverse momentum

Reconstructed tt transverse momentum [GeV]

Transverse momentum

- Crucial to correctly describe the tT system p_T
- Powheg does quite a nice job with the CDF data
- Can also measure the asymmetry as a function of p_T
- Here, at LO, you have a very nice physical picture
 - most likely to radiate an extra gluon (tT->tTj) when color line is 'bent backwards', i.e. a negative asymmetry, opposite in sign to the Born-box interference, but smaller

Some predictions for asymmetry as function of p_T

• So at LO (in asymmetry), expect negative asymmetry

Amazingly enough...

- NLO corrections for tTj asymmetry basically cancel out this effect
- This was a challenge I threw out to the QCD community several years ago, answered by Melnikov and Schulze (Nucl.Phys. B840 (2010) 129-159)
 - sorry, Kirill, there was no money prize associated
- tTj is a two-scale problem, m_t and p_T^{jet}
- Hard degrees of freedom as well as soft degrees (as at LO); hard degrees of freedom greatly reduce negative asymmetry from LO
- No implications for tT asymmetry at NNLO since that is not a two-scale problem

$$\sigma(y_t > 0) - \sigma(y_t < 0) \sim \frac{2C_F \alpha_s}{\pi} \ln^2 \left(\frac{m_t}{p_{\perp,j}}\right) A_{t\bar{t}} \sigma_{t\bar{t}}, \tag{49}$$

where $A_{t\bar{t}}$ is the $p\bar{p} \rightarrow t\bar{t}$ inclusive asymmetry. Taking the ratio of Eq. (49) and Eq. (47), we find

$$A_{t\bar{t}j}^{\text{hard}} \approx A_{t\bar{t}}.$$
(50)

The full forward-backward asymmetry at next-to-leading order is given by the sum of the two mechanisms

$$A_{t\bar{t}j}^{\rm NLO} \approx A_{t\bar{t}j}^{\rm soft}(p_{\perp,j}) + A_{t\bar{t}j}^{\rm hard}.$$
(51)

Following the preceding discussion, we estimate

$$A_{t\bar{t}j}^{\text{soft}}(p_{\perp,j}) \sim A_{t\bar{t}j}^{\text{LO}}(p_{\perp,j}) \sim \ln^{-1}\left(\frac{m_t}{p_{\perp,j}}\right), \quad A_{t\bar{t}j}^{\text{hard}} \approx A_{t\bar{t}}.$$
(52)

Data

 Asymmetry in data (bckgnd subtracted) has a slope, actually similar to what is observed in Pythia

Data

- The p_T of the tT system is related to the emission of a 5th jet
- We included a table showing the asymmetry for the 4 and 5 jet bins for the 5.3 fb⁻¹ paper
- Of course, a caveat is that in some cases the 5th jet is from internal radiation

EVIDENCE FOR A MASS DEPENDENT FORWARD- ...

TABLE XV. MC@NLO predictions for $A^{t\bar{t}}$ in reconstructed $t\bar{t}$ signal (no backgrounds) as a function of $M_{t\bar{t}}$ and jet multiplicity. The uncertainties reflect MC statistics only.

selection	all $M_{t\bar{t}}$	$M_{t\bar{t}} < 450 \text{ GeV}/c^2$	$M_{t\bar{t}} \ge 450 \text{ GeV}/c^2$
inclusive 4-jet 5-jet	$\begin{array}{c} 0.024 \pm 0.004 \\ 0.048 \pm 0.005 \\ -0.035 \pm 0.007 \end{array}$	$\begin{array}{c} 0.015 \pm 0.005 \\ 0.033 \pm 0.006 \\ -0.032 \pm 0.009 \end{array}$	$\begin{array}{c} 0.043 \pm 0.007 \\ 0.078 \pm 0.009 \\ -0.040 \pm 0.012 \end{array}$

TABLE XVI. Asymmetries $A^{t\bar{t}}$ in the data as a function of jet multiplicity.

selection	N events	all $M_{t\bar{t}}$	$M_{t\bar{t}} < 450 \text{ GeV}/c^2$	$M_{t\bar{t}} \ge 450 \text{ GeV}/c^2$
inclusive	1260	0.057 ± 0.028	-0.016 ± 0.034	0.212 ± 0.049
4-jet	939	0.065 ± 0.033	-0.023 ± 0.039	0.26 ± 0.057
5-jet	321	0.034 ± 0.056	0.0049 ± 0.07	0.086 ± 0.093

Melnikov, Scharf and Schulze

- Apply CDF cuts to the distributions
- Separate (approximately) into full NLO and NLO with jets from production and not decay
- Asymmetry is reduced both from NLO corrections to production jets, and from inclusion of jets from decay (which have same asymmetry as for inclusive tT production)

 $m(t\bar{t})$ [GeV]

Meanwhile, WTF?

- What conclusions should I draw from the parton shower studies?
- Are these reproductions of the physics in the NLO calculations, or in addition to them?
- Does nature really worry about recoil models?

Lepton asymmetry

- The lepton asymmetry provides less information, but is independent of the tT reconstruction
- An asymmetry larger than that predicted by the SM is also observed using only the lepton

CDF Run II Preliminary L = 8.7 fb'

CDF Ru	ın II	Preliminary	L =	8.7	fb^{-1}
--------	-------	-------------	-----	-----	-----------

	Data	NLO (QCD+EW) $t\bar{t}$
$M_{t\bar{t}}$	$A_{\rm FB} \ (\pm \ [\text{stat.+syst.}])$	$A_{ m FB}$
Inclusive	0.066 ± 0.025	0.016
$< 450 \mathrm{GeV/c^2}$	0.037 ± 0.031	0.007
$\geq 450 { m GeV/c}^2$	0.116 ± 0.042	0.032

Compare asymmetries

CDF Run II Preliminary $L = 8.7 \text{ fb}^{-1}$

	Data	NLO (QCD+EW) $t\bar{t}$
$M_{t\bar{t}}$	$A_{\rm FB} \ (\pm \ [{\rm stat.+syst.}])$	$A_{ m FB}$
Inclusive	0.066 ± 0.025	0.016
$< 450 \mathrm{GeV/c^2}$	0.037 ± 0.031	0.007
$\geq 450 { m GeV/c}^2$	0.116 ± 0.042	0.032

Summary

- We have measured the tT asymmetry using the full Run II data sample in a number of kinematic variables
 - 9.4 fb⁻¹; in addition, more data from new data streams
 - paper is in preparation
- The asymmetry observed in earlier data sets has continued, and some of the statistical fluctuations have nicely smoothed out
- The asymmetry 'looks like QCD', only more so
 - could additional QCD effects really be that significant?
- We will continue to try to attack the asymmetry from different angles (such as cosθ*)
- Ongoing measurement of the asymmetry in high mass bB production
 - note that there is considerable dilution from gg initial state

A tale of two cities

The tT asymmetry analysis is centered in Ann Arbor, but they've been kind enough to let me in, despite the (sports) rivalries

prior measurements

inclusive

$CDF l+jet 5.3 fb^{-1}$	15.8 ± 7.4		
CDF DIL 5.1 fb^{-1}	42.0 ± 16.0		
CDF combo	20.1 ± 6.7		
D0 l+jet 5.4 $\rm fb^{-1}$	19.6 ± 6.5		
informal combo	19.8 ± 4.7	NLO	6.6

differential (at bkg subtracted data level)

 $M < 450 \ {\rm GeV}/c^2 \quad M \geq 450 \ {\rm GeV}/c^2 \quad |\Delta y| < 1.0 \quad |\Delta y| \geq 1.0$

CDF l+jets	-2.2 ± 4.0	26.6 ± 6.2	2.9 ± 4.0	29.1 ± 9.0
D0 l+jets	7.8 ± 4.8	11.5 ± 6.2	6.1 ± 4.1	21.3 ± 9.7
informal combo	2.8 ± 3.3	19.0 ± 4.4	4.5 ± 2.8	25.2 ± 6.6
NLO + EWK	1.5 ± 0.3	4.9 ± 1.0	1.6 ± 0.3	7.2 ± 1.4

New D0 dilepton measurement: 5.8+/-5.1(stat)+/-1.3(syst)%

Asymmetry vs Δy

CDF Run II Preliminary $L = 8.7 \text{ fb}^{-1}$

Parton Level	Data	NLO (QCD+EW) $t\bar{t}$
$ \Delta y $	$A_{\rm FB}$ (± stat. ± syst.)	$A_{ m FB}$
Inclusive	$0.162\pm0.041\pm0.022$	0.066
< 0.5	$0.037 \pm 0.035 \pm 0.020$	0.023
0.5 - 1.0	$0.163\pm0.058\pm0.036$	0.072
1.0 - 1.5	$0.384\pm0.084\pm0.041$	0.119
≥ 1.5	$0.547\pm0.140\pm0.085$	0.185
< 1.0	$0.088 \pm 0.042 \pm 0.022$	0.043
≥ 1.0	$0.433 \pm 0.097 \pm 0.050$	0.139
	Data	NLO (QCD+EW) $t\bar{t}$
Slope $\alpha_{\Delta y}$ of Best-Fit Line	$(30.6 \pm 8.6) \times 10^{-2}$	10.3×10^{-2}

Asymmetry vs mass

CDF Run II Preliminary $L = 8.7 \text{ fb}^{-1}$

Parton Level	Data	NLO (QCD+EW) $t\bar{t}$
$M_{tar{t}}$	$A_{\rm FB}$ (± stat. ± syst.)	$A_{ m FB}$
$< 450 { m GeV/c}^2$	$0.078 \pm 0.048 \pm 0.024$	0.047
$450-550 { m GeV/c}^2$	$0.256\pm0.063\pm0.028$	0.090
$550-650{ m GeV/c^2}$	$0.366\pm0.085\pm0.083$	0.117
$\geq 650 { m GeV/c}^2$	$0.493\pm0.159\pm0.076$	0.143
$< 450 \mathrm{GeV/c^2}$	$0.078 \pm 0.048 \pm 0.024$	0.047
$\geq 450 { m GeV/c}^2$	$0.296\pm0.059\pm0.031$	0.100
	Data	NLO (QCD+EW) $t\bar{t}$
Slope $\alpha_{M_{t\bar{t}}}$ of Best-Fit Line	$(15.6 \pm 5.0) \times 10^{-4}$	3.3×10^{-4}

Comparison to 5.3 fb⁻¹ results

CDF Run II Preliminary $L = 8.7 \text{ fb}^{-1}$

			· · · · · · · · · · · · · · · · · · ·
Parton Level	NLO (QCD+EW) $t\bar{t}$	$5.3 { m ~fb^{-1}}$	$8.7 { m ~fb^{-1}}$
$ \Delta y $	$A_{ m FB}$	$A_{\rm FB} \ (\pm [{\rm stat.+syst.}])$	$A_{\rm FB} \ (\pm [{\rm stat.+syst.}])$
Inclusive	0.066	0.158 ± 0.074	0.162 ± 0.047
< 1.0	0.043	0.026 ± 0.118	0.088 ± 0.047
≥ 1.0	0.139	0.611 ± 0.256	0.433 ± 0.109
Parton Level	NLO (QCD+EW) $t\bar{t}$	$5.3 { m ~fb^{-1}}$	$8.7 { m ~fb^{-1}}$
$M_{t\bar{t}}$	$A_{ m FB}$	$A_{\rm FB} \ (\pm [{\rm stat.+syst.}])$	$A_{\rm FB} \ (\pm [{\rm stat.+syst.}])$
$< 450 \mathrm{GeV/c^2}$	0.047	-0.116 ± 0.153	0.078 ± 0.054
$\geq 450 \mathrm{GeV/c^2}$	0.100	0.475 ± 0.112	0.296 ± 0.067