

ATLAS results on BSM searches with top quarks

Tobias Golling (Yale University)

On behalf of the ATLAS Collaboration

Why Top?

- Theory
 - Top is heavy \Rightarrow special role in EWSB?
 - Need top partner to fix hierarchy problem
 - Tantalizing hints of NP in $t\bar{t} A_{FB}$ at Tevatron?
- Experiment
 - Experimental techniques well established to isolate and identify top quarks and b-jets
 - If there is top there also is bottom

Outline

- New top quark production mechanisms
 - tī resonances
 - SUSY 3rd generation
 - 4th generation and Vector-Like Quarks
 - Single top final states and other top searches
- I will not talk about New physics in top quark decay / properties
 - W polarization
 - FCNC
 - Spin correlations in $t\bar{t}$

Find all results here:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic http://cds.cern.ch/

— ...

Close your eyes! Spoiler!

 $\begin{array}{l} \text{RS with } g \hspace{0.1cm} /g_{s} = -0.20 : \text{tt} \rightarrow \text{l+jets}, m_{\text{tt}} \\ \text{RS with } \text{BR}(g_{\mu\nu} \rightarrow \text{tt}) = 0.925 : \text{tt} \rightarrow \text{l+jets}, m_{\text{tt boundard}} \\ \end{array} \hspace{0.1cm} \overset{\text{L=2.1 fb}^{-1}, \text{7 TeV [ATLAS-CONF-2012-029]} \\ \textbf{L=2.1 fb}^{-1}, \text{7 TeV [Preliminary]} \\ \end{array}$

1.03 TeV KK gluon mass 1.50 TeV KK gluon mass

SUSY 3rd generation:

$\tilde{q} \rightarrow bb\tilde{\chi}_{1}^{0}$ (virtual \tilde{b}) : 0 lep + 1/2 b-j's + $E_{T \text{ miss}}$	L=2.1 fb ⁻¹ , 7 TeV [1203.6193]	900 GeV $\tilde{\mathbf{g}}$ mass $(m(\tilde{\chi}_{*}^{0}) < 300 \text{ GeV})$
$\tilde{g} \rightarrow bb \tilde{\chi}_{1}^{0}$ (virtual \tilde{b}) : 0 lep + 3 b-j's + $E_{T \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058]	1.02 TeV \tilde{g} mass $(m\tilde{\chi}^0_1) < 400 \text{ GeV}$
$\tilde{g} \rightarrow \tilde{b} \tilde{\chi}_{1}^{0}$ (real \tilde{b}) : 0 lep + 3 b-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058]	1.00 TeV \widetilde{g} mass $(m\widetilde{\chi}_1^0) = 60$ GeV)
$\tilde{g} \rightarrow tt \tilde{\chi}_{10}^{0}$ (virtual \tilde{t}) : 1 lep + 1/2 b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ , 7 TeV [1203.6193]	710 GeV \widetilde{g} mass $(m(\widetilde{\chi}_1^0) < 150 \text{ GeV})$
$\tilde{g} \rightarrow t \tilde{\chi}_{1}^{0}$ (virtual \tilde{t}) : 2 lep (SS) + j's + $E_{T,miss}$	L=2.1 fb ⁻¹ , 7 TeV [1203.5763]	650 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 210 \text{ GeV})$
$\tilde{g} \rightarrow t \tilde{\chi}_{1}^{0}$ (virtual \tilde{t}) : 0 lep + multi-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1206.1760]	870 GeV \widetilde{g} mass $(m(\widetilde{\chi}_1^0) < 100 \text{ GeV})$
$\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_{1}^{0}$ (virtual \tilde{t}) : 0 lep + 3 b-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058]	<u>940 GeV</u> g mass (m(χ̃) < 50 GeV)
$\tilde{g} \rightarrow t \tilde{\chi}^0$ (real t) : 0 lep + 3 b-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058]	820 GeV \widetilde{g} mass $(m(\widetilde{\chi}_1^0) = 60 \text{ GeV})$
$bb, b_1 \rightarrow b\tilde{\chi}_1 : 0 \text{ lep } + 2 \text{ -b-jets } + E_{T,\text{miss}}$	L=2.1 fb ⁻¹ , 7 TeV [1112.3832]	390 GeV b mass $(m(\tilde{\chi}_1^0) < 60 \text{ GeV})$
tt (very light), t \rightarrow b $\tilde{\chi}_{1}^{\pm}$: 2 lep + $E_{T.miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-059] 135 C	GeV t mass $(m(\tilde{\chi}_1^0) = 45 \text{ GeV})$
tt (light), $t \rightarrow b \tilde{\chi}_1^{\pm}$: 1/2 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-070] 120-	173 GeV t mass $(m(\tilde{\chi}_1) = 45 \text{ GeV})$
$\widetilde{t}\widetilde{t}$ (heavy), $\widetilde{t} \rightarrow t \widetilde{\chi}_{o}^{0}$: 0 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-074]	380-465 GeV t mass $(m_{\tilde{\chi}_1}^0) = 0$
\widetilde{t} (heavy), $\widetilde{t} \rightarrow t \widetilde{\chi}_{\bullet}$: 1 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-073]	230-440 GeV t mass $(m(\tilde{\chi}_1^0) = 0)$
tt (heavy), t \rightarrow t $\tilde{\chi}_1$: 2 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-071]	298-305 GeV t mass $(m(\tilde{\chi}_1^0) = 0)$
tt (GMSB) $Z(\rightarrow II) + b - jet + E_{T mise}$	L=2.1 fb ⁻¹ , 7 TeV [1204.6736]	<u>310 GeV</u> t mass (115 < $m(\tilde{\chi}_1^0)$ < 230 GeV)

4th generation, VLQ and others:

4 generation : Q Q → WqWo	
4 ^m generation : ຟີຟັ,→ WbWb	
4 th generation_: d₁d₄ → WtWt	t
New quark b' : b'b' \rightarrow Zb+X, m_{π}	
$\Pi_{\text{ton partner}} \rightarrow \text{tt} + A_0 A_0$: 2-lep + jets + $E_{T \text{ miss}} (M_{T}^2)$	
Vector-like quark : CC, m	
Vector-like quark : NC, m	
uutt CI : SS dilepton + jets + $E_{T miss}$	

L=1.0 fb ⁻¹ , 7 TeV [1202.3389] 3	350 GeV Q4 mass
L=1.0 fb ⁻¹ , 7 TeV [1202.3076]	404 GeV U ₄ mass
L=1.0 fb ⁻¹ , 7 TeV [1202.6540]	480 GeV d, mass
L=2.0 fb ⁻¹ , 7 TeV [1204.1265]	400 GeV b' mass
L=1.0 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-071]	1 483 GeV T mass (m(A) < 100 GeV)
L=1.0 fb ⁻¹ , 7 TeV [1112.5755]	900 GeV Q mass (coupling $\kappa_{qQ} = v/m_Q$)
L=1.0 fb ⁻¹ , 7 TeV [1112.5755]	760 GeV Q mass (coupling $\kappa_{nD} = v/m_0$)
L=1.0 fb ⁻¹ , 7 TeV [1202.5520]	1.7 TeV A

• Excellent performance of ATLAS and LHC in 2011

ATLAS

	and the second of the second of the	
Still Ch	2011 performance	Design performance
Colliding bunches	1331	2808
Energy	3.5 TeV x 3.5 TeV	7 TeV x 7 TeV
Bunch spacing	50 ns	25 ns
Luminosity	3.6 x 10 ³³ cm ⁻² s ⁻¹	10 ³⁴ cm ⁻² s ⁻¹
Pile-up interactions	~20	~25
Protons per bunch	1.45 x 10 ¹¹	1.15 x 10 ¹¹
The second second		a span

Jobias Golling, Yait

B-tagging at ATLAS

Top Quark Precision Physics Era

- O(1M) tt produced at ATLAS in 2011 (~10 times Tevatron statistics)
- $t\bar{t}$ understanding important $\rightarrow t\bar{t}$ dominant background for many NP searches
 - $\sigma_{t\bar{t}}$ experimental precision 6% approx. NNLO theory uncertainty ~10%
 - Measurement of fraction of $t\bar{t}$ events with central jet veto reduces ISR/ FSR modeling uncertainties by factor of ~2 [arXiv:1203.5015]

Resonance Searches in tt

- Resonance searches have famous precedents in history
- Search strategy: look for bump in $m_{t\bar{t}}$ mass distribution
 - 3 different signatures depending on W boson decay from t→Wb
- Experimental challenge
 - Understand detector effects (resolution, efficiency) at very high momentum
 - Almost no control samples for high-p_T leptons,
 W bosons, top quarks...
 - However, clean signal expected over SM tail

Resonance Searches in tt

- Benchmark models:
 - Z' boson
 - Leptophobic topcolor model
 - Narrow: Γ/m = 1.2%
 - Phys. Rev. D 49 (1994) 4454; arXiv:hep-ph/9911288; arXiv:1112.4928
 - Kaluza-Klein Gluon (KKG)
 - Colored resonance
 - Randall-Sundrum extra dimension models
 - Γ/m = 10-15%
 - Phys. Rev. D 77 (2008) 015003;
 Phys. Rev. D 76 (2007) 115016;
 JHEP 09 (2007) 074

Search for tt Resonances

- L+jets discriminant: m_{tt} (ΔR_{min} method, removes jets "far" from rest of activity)
- Dilepton discriminant: $H_T + E_T^{miss}$

Search for tt Resonances (I+jets)

Leptophobic top-color: 0.5 TeV < m(Z') < 0.88 TeV RS model: 0.5 TeV < m(g_{κκ}) < 1.13 TeV

Tobias Golling, Yale [arXiv:1205.5371]

Object and Event Selection (Boosted)

- L+jets channel
- Same e and µ and trigger requirements as resolved analysis
- Leptonic top candidate
 - Take closest jet with p_T >30 GeV with 0.4 < ΔR (lepton,jet) <1.5
 - Use W mass hypothesis for neutrino p_z
- Hadronic top candidate
 - 1 anti-kT (R=1.0) fat jet
 - Large distance to jet from leptonic top: ΔR(fat jet,leptonic top jet)>1.5
 - p_T>250 GeV, m_j>100 GeV
 - Recluster (using FastJet) with kT-Algorithm and require last splitting scale √d12 > 40 GeV

[arXiv:1207.2409]

[arXiv:1207.2409]

Leptophobic top-color: 0.6 TeV < m(Z') < 1.15 TeV RS model: 0.7 TeV < m(g_{кк}) < 1.5 TeV

[arXiv:1207.2409]

We have not seen SUSY yet Is SUSY in trouble?

Nima Arkani-Hamed, Implications of LHC results for TeV-scale physics (Oct 31 2011) https://indico.cern.ch/conferenceOtherViews.py?view=standard&confld=157244

3rd Generation SUSY Searches

- Two ways to search for them 10
 - Gluino cascade decays
 - Direct pair production

Gluino Mediated Stop Production

- Final state depending on W boson decay modes / #b-jets
 - 1 lepton + jets + E_T^{miss} (lepton trigger) [PRD 85 (2012) 112006, arXiv: 1203.6193]
 - 2 same-sign leptons + jets + E_T^{miss} (lepton trigger) [PRL 108 (2012) 241802, arXiv:1203.5763]
 - Multijets + E_T^{miss} (jet triggers) [arXiv:1206.1760]
 - 3 b-jets [ATLAS-CONF-2012-058, http://cdsweb.cern.ch/record/ 1453786]
- We always assume pair production and 100% BR if not specified otherwise

Gluino Mediated Stop – 1 Lepton Channel

ã 2222

t (b)

Background estimated from data:

 $N_{\rm SR} = \frac{N_{\rm SR}^{\rm MC}}{N_{\rm CR}^{\rm MC}} (N_{\rm CR}^{\rm obs} - N_{\rm CR}^{\rm res})$

- Electron/muon $p_T > 25/20 \text{ GeV}$
- \geq 4 jets with p_T > 50 GeV (leading above 60 GeV)
- m_T > 100 GeV
- B-tagging: ≥ 1 jet b-tagged

$$m_{\rm T} = \sqrt{2p_{\rm T}^l E_{\rm T}^{\rm miss} \cdot (1 - \cos \Delta \phi [l, E_{\rm T}^{\rm miss}])}$$

$$m_{\rm eff} \equiv \Sigma |p_{\rm T}^{\rm jet}| + (\Sigma |p_{\rm T}^{\rm el/mu}|) + E_{\rm T}^{\rm miss} > 700 \text{ GeV}$$

Gluino Mediated Stop – SS Lepton Channel

<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>			
ξ ₁ +(b)		SR1	SR2
	$t\bar{t} + X$	0.37 ± 0.26	0.21 ± 0.16
Xi Xi	Diboson	0.05 ± 0.02	0.02 ± 0.01
	Fake-lepton	0.34 ± 0.20	< 0.17
	Charge mis-ID	0.08 ± 0.01	0.039 ± 0.007
	Total SM	0.84 ± 0.33	0.27 ± 0.24
	Observed	0	0
	$\sigma_{\rm vis}^{\rm obs}$ [fb]	<1.6	<1.5
	$\sigma_{\rm vis}^{\rm exp}$ [fb]	$< 1.7^{+0.5}_{-0.1}$	$< 1.6^{+0.2}_{-0.1}$

- Electron/muon $p_T > 20/20$ GeV
- \geq 4 jets with $p_T > 50 \text{ GeV}$
- E_T^{miss} > 150 GeV
- m_T > 100 GeV (SR2)

Gluino Mediated Stop – 3 b-jets

SR's based on E_{T}^{miss} and m_{eff}

t(b) . Xº (X.)

SR	<i>tī</i> +jets	others	SM	data
JK	(MC)			
SP4 I	33.3 ± 7.9	11.1 ± 4.9	44.4 ± 10.0	45
SIN4-L	(32.6 ± 15.4)			
SP4-M	16.4 ± 4.1	6.6 ± 2.9	23.0 ± 5.4	14
5K4-IVI	(16.1 ± 8.4)			
CD4 T	9.7 ± 2.1	3.8 ± 1.6	13.3 ± 2.6	10
5K4-1	(11.4 ± 5.4)			
CD4 I	10.3 ± 3.3	2.4 ± 1.4	12.7 ± 3.6	12
SK0-L	(10.0 ± 6.2)			
CD (T	8.3 ± 2.4	1.6 ± 1.1	9.9 ± 2.6	8
51(6-1	(7.9 ± 5.3)			

Events / 100 GeV Preliminary ATLAS Data 2011 HH SM Total L dt ~ 4.71 fb⁻¹, \s = 7 TeV 10^{2} Top production SR6-I fi+bb production Gtt: m,-800 GeV, m .,-50 GeV Gtt: m_-600 GeV, m_-200 GeV 10 data / exp 600 1000 1200 1400 1600 800 1800 2000 m_{eff} [GeV] Events / 100 GeV Preliminary ATLAS Data 2011 10 L dt ~ 4.71 fb⁻¹, (s = 7 TeV HH SM Total Top production SR6-T fi+bb production Gtt: m_=800 GeV, m ._=50 GeV Gtt: m_=600 GeV, m_=200 GeV 10 exp data / i 600 800 1000 1200 1400 1600 1800 2000 m_{eff} [GeV]

CR:

ğ 2222

- 2 b-jets
- 1-lep

7/18/12

Tobias Golling, Yale

[ATLAS-CONF-2012-058 http://cdsweb.cern.ch/record/1453786]

Gluino Mediated Stop – 3 b-jets

Summary: "On shell": stop excluded up to 700 GeV for gluino below 900 GeV "Off shell": gluino mass exclusion getting close to 1 TeV ≥6-9 jets with p_T > 55 (80) GeV

• E_T^{miss} significance > 4

Direct Stop Pair Production

Signature searches

 I will present
 tt̄ + E_T^{miss}

Direct Stop Pair Production

The large number of topologies require a dedicated strategy to cover the maximum number of possibilities in a coherent way.

Direct Stop – 0-lepton Channel

	SRA	SRB
E_T^{miss}	> 150 GeV	> 260 GeV
tī	9.2 ± 2.7	2.3 ± 0.6
$t\bar{t} + W/Z$	0.8 ± 0.2	0.4 ± 0.1
Single top	0.7 ± 0.4	0.2 + 0.3 - 0.2
Z+jets	1.3 + 1.1 - 1.0	$0.9 \stackrel{+}{} \stackrel{0.8}{}{}_{}$
W+jets	1.2 + 1.4 - 1.0	0.5 ± 0.4
Diboson	0.1 + 0.2 - 0.1	0.1 + 0.2 - 0.1
Multi-jets	0.2 ± 0.2	0.02 ± 0.02
Total SM	13.5 + 3.7 - 3.6	$4.4 \ + \ 1.7 \ - \ 1.3$
SUSY $(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = (400, 1)$ GeV	14.8 ± 4.0	8.9 ± 3.1
Data (observed)	16	4

- >= 6 jets, >= 1 b-tag
- E_T^{miss}, E_T^{miss} angles, tracking vs calo, m_{jjj} (dRmin technique)
- Lepton veto, reduce taus with tracking info and m_T
- Dominant BG: tt (I+jets channel)
- Data-driven BG estimate

Tobias Golling, Yale [ATLAS-CONF-2012-074 30 https://cdsweb.cern.ch/record/1460271]

Direct Stop – 1-lepton Channel

Entries / 25 GeV

		1		0			
Requirement		SR A	SR B	SR C	SR D	SR E	
$E_{\rm T}^{\rm miss}$ [GeV] >		150	150	150	225	275	
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$ [GeV ^{1/}	/2] >	7	9	11	11	11	
$m_{\rm T}$ [GeV] >		120	120	120	130	140	
Regions	SR	А	SR B	SR C	SR D	SR E	
tī	36 ±	= 5	27 ± 4	11 ± 2	4.9 ± 1.3	1.3 ± 0.6	;
$t\bar{t} + V$, single top	2.9 ±	0.7 2	2.5 ± 0.6	1.6 ± 0.3	0.9 ± 0.3	0.4 ± 0.1	
V+jets, VV	2.5 ±	1.3 1	1.7 ± 0.8	0.4 ± 0.1	0.3 ± 0.1	0.1 ± 0.1	
Multijet	0.4^{+}	0.4 0.4	$0.3^{+0.3}_{-0.3}$	$0.3^{+0.3}_{-0.3}$	$0.3^{+0.3}_{-0.3}$	$0.0^{+0.3}_{-0.0}$	
Total background	42 ±	= 6	31 ± 4	13 ± 2	6.4 ± 1.4	1.8 ± 0.7	7
Signal benchmark 1 (2)	25.6 (8.8) 2	3.0 (8.1)	17.5 (6.9)	13.5 (6.2)	7.1 (4.5)	
Observed events	38	3	25	15	8	5	
p_0 -values	0.5	5	0.5	0.32	0.24	0.015	

- >= 4 jets, >= 1 b-tag
- E_T^{miss}, m_T, m_{jjj} (dRmin technique)
- Lepton veto
- Dominant BG: tt (dilepton channel)
- Data-driven BG estimate

Direct Stop – 2-lepton Channel

	SF	DF
Z/γ^{\star} +jets	1.2 ± 0.5	-
$(Z/\gamma^{\star}+jets scale factor)$	(1.27)	-
tī	0.23 ± 0.23	0.4 ± 0.3
$(t\bar{t} \text{ scale factor})$	(1.21)	(1.10)
$t\bar{t}W + t\bar{t}Z$	0.11 ± 0.07	0.19 ± 0.12
WW	$0.01^{+0.02}_{-0.01}$	0.19 ± 0.18
WZ + ZZ	0.05 ± 0.05	0.03 ± 0.03
Wt	$0.00^{+0.17}_{-0.00}$	$0.10^{+0.18}_{-0.10}$
Fake leptons	$0.00^{+0.14}_{-0.00}$	$0.00^{+0.09}_{-0.00}$
Total SM	1.6 ± 0.6	0.9 ± 0.6
Signal, $m(\tilde{t}_1) = 300 \text{ GeV}, m(\tilde{\chi}_1^0) = 50 \text{ GeV}$	2.15	3.73
Signal, $m(T) = 450$ GeV, $m(A_0) = 100$ GeV	3.10	5.78
Observed	1	2
95% CL limit on $\sigma_{\rm vis}^{\rm obs}$ [fb]	0.86	1.08
95% CL limit on $\sigma_{\rm vis}^{\rm exp}$ [fb]	0.89	0.79

- >= 2 jets, >= 1 b-tag
- m_{T2} > 120 GeV
- Z mass veto
- Dominant BG: tt, Z+jets
- Data-driven BG estimate

Tobias Golling, Yale

[ATLAS-CONF-2012-071 https://cdsweb.cern.ch/record/1460268]

Direct Stop – Summary

4th Generation and Vector-Like Quarks

- Can explain
 - enough CP violation to explain matter-dominated universe
 - Higgs naturalness
 - Fermion mass hierarchy
 - Dark matter
- Sequential 4th generations in deep trouble with m_H ~ 125 GeV

Search for Heavy Quarks in $t^{\dagger}\bar{t}^{\prime} \rightarrow WbW\bar{b}$

- $t'\bar{t}' \rightarrow WbW\bar{b}$ (I+jets channel)
- Start from default tt selection using b-tagging and tighter cut on • leading jet pT
- Discriminant: reconstructed top/t' mass (using a likelihood fit) •
- 3-jet bin \rightarrow constrain W+heavy flavor
- 4-jet bin \rightarrow best S/B
- Use profiling carefully to reduce systematics •

Search for Heavy Quarks in QQ→ WqWq True p_ of W boson [GeV] 700 True p

Generated Event

ATLAS Simulation $m_{o} = 350 \text{ GeV}$

True $\Delta R(I,v)$

ATLAS Simulation

100

50

0.3

- $Q\overline{Q} \rightarrow WqW\overline{q}$ (dilepton channel) - more general decay to q, no b-tagging
- Start from default tt selection
- Discriminant: collinear mass

Search for Heavy Quarks in $b'\bar{b}' \rightarrow WtW\bar{t}$

Search for Heavy Quarks and SS Top

- SS top and $b'\bar{b}' \rightarrow WtW\bar{t}$
 - Two SS leptons + 2 jets + H_T + E_T^{miss}
- b'b' → WtWt BR to SS leptons is 8/81 (4 times smaller than I+jets channel) but better S/B
- Select positively charged leptons for SS top signal
- Backgrounds
 - Irreducible diboson background
 - Fakes, determined using matrix method
 - Charge flip, determined using Z events

38

[arXiv:1202.5520]

Search for $W' \rightarrow tb$

=vents

- NP searches in single-top final states ullet
- Based on single top s-channel • analysis
- Discriminant: m_{tb} •

[arXiv:1205.1016]

Search for Top-jet Resonances

- Motivation: tt forward-backward asymmetry @Tevatron [arXiv: 1101.0034, arXiv:1107.4995]
- Possible explanation: Top-flavor violating processes
- Look for a new heavy resonance produced in association with a topquark
- Two types of X resonances
 considered
 - color singlet W' \rightarrow m(t+jet) resonance
 - di-quark color triplet → m(t+jet) resonance
- Resonance occurs in the m(t+jet) or m(t+jet) channel, but not in both

[ATLAS-CONF-2012-096]

Search for Top-jet Resonances

[ATLAS-CONF-2012-096]

Search for Top-jet Resonances

 Set limits vs righthanded coupling to tq

Other Top Partners

ATLAS

Little Higgs models with T-parity • conservation

Events/30 GeV

- Search in tails of E_{T}^{miss} and m_{T} in I+jets • channel
- [Phys. Rev. Lett. 108, 041805 (2012) • arXiv:1109.4725]
- Reinterpretation of stop search (2-lepton) •

Summary

- LHC and ATLAS performing very well
- Large ATLAS physics program top plays an important role
- No hints of New Phenomena YET
- Many new results in pipeline stay tuned

Backup

Direct Stop Pair Production in GMSB

- GMSB scenario with gravitino LSP (m < 1 keV) and neutralino NLSP (higgsino-like considered)
- Analysis signature: $Z \rightarrow II + b$ -jet + jets + E_T^{miss}

[arXiv:1204.6736]

Very Light Stop – 2 Leptons

Light Stop – 1/2 Leptons

Gluino Mediated Stop – SS Lepton Channel

[PRL 108 (2012) 241802,

arXiv:1203.5763]

Sbottom SUSY Searches

[PRL 108 (2012) 181802 (arXiv:1112.3832 [hep-ex])]

[ATLAS-CONF-2012-058 http://cdsweb.cern.ch/record/1453786]

Search for Heavy Quarks in $b'\bar{b}' \rightarrow Zb+X$

- $b'\overline{b}' \rightarrow Zb+X$
- Select Z and b-jet
 - $p_T(Zb) > 150 \text{ GeV}$
 - Set limit based on m(Zb)

[arXiv:1204.1265]

54