Tools for precision and discovery physics with top quarks

Status of Single Top Cross Sections

Adrian Signer

Paul Scherrer Institut

17 July 2012, CERN

basic processes

classification of physical processes is not that straightforward

approximate (!) expected / measured SM cross sections in pb

	Tevatron	7 TeV LHC	14 TeV LHC
t $(ar{t})$ "t"-ch	1.2	40 (20)	150 (100)
t $(ar{t})$ "s"-ch	0.55	2.5 (1.4)	7 (4)
tW^-	0.15	8	45

more detailed questions

- NLO corrections in production
- resummation of soft logs → "N"NLO corrections
- top decay, at LO/NLO, spin correlations
- off-shell effects / non-factorizable corrections
- initial b quark and m_b effects: 5 flavour scheme vs. 4-flavour scheme
- matching to parton showers

- fully differential NLO QCD corrections for t–, s–channel and Wt known [Harris et.al; Sullivan; Zhu . . .]
- resummation at NNLL of inclusive cross section [Kidonakis; Wang et.al.]
 - \rightarrow "poor man's" NNLO corrections
- top decay added, with NLO corrections in production and decay [Campbell et.al; Cao et.al]
 - → issues with definition of channel
 - $\rightarrow \text{spin correlations}$
- EW corrections known in SM and MSSM [Beccaria et.al; Macorini et.al] effect small, a few %
- non-factorizable corrections known [Falgari et.al]
 - → effects small, except at kinematic boundaries
- 4-flavour vs. 5-flavour scheme [Campbell et.al]
 - → generally good agreement at NLO
- all channels (including tH^-) included in MC@NLO and POWHEG [Frixione,Frederix, Laenen, Motylinski, Alioli, Nason, Re, Webber, White]
- BSM effects (e.g. anomalous trilinear couplings) included in WHIZARD
 - → interference with background diagrams on its way [Bach, Kilian, Ohl...]

s-channel: Kidonakis [1001.5034]

- resummation in moment space
- $s_4 \equiv (p_a + p_b p_1)^2 m_t^2 = s + t + u m_t^2$ for $s_4 \to 0 \Rightarrow$ $\alpha_s^n L^{2n-1} \equiv \alpha_s^n \left[\log^{2n-1} (s_4/m_t^2)/s_4 \right]_+$
- NLL \rightarrow NNLO: $\alpha_s^2~L^3$ and $\alpha_s^2~L^2$ NLLO $_{
 m approx}$ /NLO \sim 10% increase NNLL \rightarrow NNLO: also $\alpha_s^2~L^1$ and $\alpha_s^2~L^0$ NLLO $_{
 m approx}$ /NLO further 3-4% increase
- soft limit good approximation for Tevatron and LHC
- damping factors (to limit soft gluon contributions away from threshold) improve soft approximation
- "best" predictions, MSTW2008 NNLO pdf:

Kidonakis
$$m_t = 173$$
 GeV Zhu et.al. $m_t = 173.2$ GeV
$$\sigma_{\rm TeV} = 0.523^{+0.001+0.030}_{-0.005-0.028} \; {\rm pb} \qquad \qquad \sigma_{\rm TeV} = 0.467^{+0.01}_{-0.01} \; {\rm pb}$$

$$\sigma_{\rm LHC \; 7} = 3.17^{+0.06+0.13}_{-0.06-0.10} \; {\rm pb}$$

$$\sigma_{\rm LHC \; 7} = 2.81^{+0.16}_{-0.10} \; {\rm pb}$$

s-channel: Zhu, Li, Wang, Zhang [1006.0681]

- resummation via SCET
- different definition of resummation variable $q(p_1)\bar{q}(p_2) \to t(p_t)b(p_b)\{g(p_g)\}$

Zhu et.al.
$$s_4 \equiv (p_1 + p_2 - p_t)^2$$
 $s_4 \stackrel{p_g \parallel p_b}{\longrightarrow} 0$

Kidonakis
$$s_4^{
m K} \equiv (p_1+p_2-p_b)^2-m_t^2$$
 $s_4^{
m K} \stackrel{p_g \parallel p_b}{
eq} 0$

contrary to $s_4^{
m K}$ with s_4 hard-collinear logarithms are also included

soft/coll limit good approximation for Tevatron, not very good for LHC

Tevatron

LHC @ 7 TeV

LHC @ 14 TeV

t-channel: Kidonakis [1103.2792] vs Wang, Li, Zhu, Zhang [1010.4509]

- similar technical (moments vs SCET) and physical (resummation kinematics and virtual contribution) differences as for s-channel
- soft gluon approximation not considered reliable
- results for $m_t = 173$ GeV and MSTW2008 NNLO pdf

Kidonakis

$$\sigma_{\rm TeV} = 1.04^{+0.00}_{-0.02} \pm 0.06 \text{ pb}$$

$$\sigma_{\rm LHC 7} = 41.7^{+1.6}_{-0.2} \pm 0.8 \text{ pb}$$

$$\sigma_{\rm LHC 14} = 151^{+4}_{-1} \pm 3 \text{ pb}$$

Wang et.al.

$$\sigma_{\rm TeV} = 0.982 \text{ pb}$$

$$\sigma_{\rm LHC 7} = 40.9^{+0.1}_{-0.1} \text{ pb}$$

$$\sigma_{\rm LHC 7} = 152.4^{+0.4}_{-1.0} \text{ pb}$$

- better numerical agreement than for s-channel
- resummation effects decrease scale dependence

W t and $H^- t$: Kidonakis [1005.4451]

- resummed cross section re-expanded: $\sigma^{(2)} = \sigma^{(0)} \alpha_s^2 \left(\underbrace{c_3 L^3 + c_2 L^2}_{\mathrm{NLL}} + \underbrace{c_1 L^1 + c_0 L^0}_{\mathrm{NNLL}} \right)$
- soft gluons claimed to be dominant
- damping factors applied
- NLO → 'N'NLO: 8% increase at 7 TeV LHC
- $m_t = 173$ GeV, MSTW2008 NNLO pdf: $\sigma(tW^-) = 7.8 \pm 0.2^{+0.5}_{-0.6} \text{ pb}$
- scale variation error < pdf error
- similar analysis for H^- t: corrections NLO \rightarrow 'N'NLO: 15-20%, depending on m_H

adding top decay

new issue: definition of process, e.g t-channel

it is an "irrelevant coincidence" at LO that

$$|\mathcal{A}_{res} + \mathcal{A}_{EWbg} + \mathcal{A}_{QCDbg}|^2 = |\mathcal{A}_{res} + \mathcal{A}_{EWbg}|^2 + |\mathcal{A}_{QCDbg}|^2$$

- shouldn't we define a proper observable (to which \mathcal{A}_{QCDbg} contributes) with proper final states (e.g. b-jets), rather than try to subtract $|\mathcal{A}_{QCDbg}|^2$?
- similar comment regarding distinction between s-channel and t-channel

 mixing but no interference at NLO (another "irrelevant coincidence"), beyond NLO there is interference

adding top decay

• this issue is particularly acute for Wt and has been studied extensively [Kersevan et.al; Tait; Belyaev et.al; Campbell et.al; Frixione et.al]

- possible remedies
 - ullet invariant mass (anti-) cut $|M_{Wb}-m_t|\gg \Gamma_t$
 - $p_T^b < p_T^{
 m veto}$ (hard b tend to come from t decay)
 - Diagram removal $\mathcal{A}_{(Wt)} + \mathcal{A}_{(tt)} o \mathcal{A}_{(Wt)}$
 - Diagram subtraction

$$|\mathcal{A}_{(Wt)} + \mathcal{A}_{(tt)}|^2 \to |\mathcal{A}_{(Wt)}|^2 + 2\text{Re}(\mathcal{A}_{(Wt)}\mathcal{A}_{(tt)}^*) + |\mathcal{A}_{(tt)}|^2 - |\widetilde{\mathcal{A}_{(tt)}}|^2$$

• using b-jet rather than b-parton allows to define (at least theoretically) clean observables

politically incorrect comment about gauge invariance:

- diagram removal induces gauge invariance, is this a disaster?
- if gauge dependence is suppressed w.r.t. accuracy of calculation, this is the same as μ dependence
- ideally introduce counting in small kinematic variable δ if we compute at order δ^n , it is ok to end up with residual gauge dependence at order δ^{n+1} .
- if no counting available, check numerically, e.g. DR vs DS
- this is completely analogous to renormalization/factorization scale/scheme dependence.

```
what value for \xi? what value for \mu? formally: any \xi \sim 1 \text{ (parameter in } \mathcal{L}) \qquad \mu \sim s_{ij} \qquad \text{avoid large coefficients} setting \xi = 10^{10} \qquad \text{setting } \mu = M_{\text{Planck}} \qquad \text{simply stupid !!} variation of \xi variation of \mu estimate of h.o. corrections ??
```

cross check possible e.g. with WHIZARD

spin correlations

- $\Gamma_t > \Lambda_{\rm QCD} \Longrightarrow$ top quark decays before QCD blurs spin information [Mahlon, Parke; Bernreuther et.al; Motylinski; Cao et.al; Melnikov, Schulze, . . .]
- detailed test of $t \to Wb \to \ell \nu b$ possible
- details depend on process (top pair production / single top), collider (Tevatron / LHC) and kinematic regime (invariant mass)
- find observable that strongly depends on spin correlation, e.g: $\cos(\vec{p}_{\rm spec}^* \cdot \vec{p}_{\ell}^*)$ [Cao et.al] \rightarrow relatively insensitive to higher-order corrections

test against SM and BSM predictions

non-factorizable corrections have been extensively studied [Fadin et.al; Melnikov et.al; Beenakker et.al; Denner et.al.; Jadach et.al; . . .] but usually neglected at hadron colliders:

- they seem to be more difficult to compute (not really)
- they are generally small [Beenakker et.al; Pittau]
 - resonant o non-resonant propagator unless $E \lesssim \Gamma$ is small (soft)
 - cancellations for "inclusive" observables [Fadin, Khoze, Martin]
- include off-shell effects: consistently combine non-factorizable with propagator corrections: [Falgari et.al] e.g. transverse mass: $M_T = \sum_{r=0}^{\infty} |p_T|^2 (\sum_{r=0}^{\infty} \vec{p}_T)^2$

effective-theory inspired calculation (hard/soft through method of region)

real amplitude:

corrections to production (soft and coll singularities):

 $\int d\Phi_{n+1} \left| \mathcal{A}_{\mathrm{prod}}^g \otimes \mathcal{P} \otimes \mathcal{A}_{\mathrm{dec}}^0 \right|^2 \text{ plus (hard) virtual corrections for } t\text{-production is IR finite}$ corrections to decay (soft and coll singularities):

 $\int d\Phi_{n+1} \left| \mathcal{A}_{\mathrm{prod}}^{0} \otimes \mathcal{P} \otimes \mathcal{A}_{\mathrm{dec}}^{g} \right|^{2} \text{ combined with (hard) virtual correction for decay is IR finite non-factorizable corrections (soft singularities only):}$

$$\int d\Phi_{n+1} \, 2\operatorname{Re} \, \left(\mathcal{A}^0_{\operatorname{prod}} \otimes \mathcal{P} \otimes \mathcal{A}^{\operatorname{g}}_{\operatorname{dec}} \right) \left(\mathcal{A}^{\operatorname{g}}_{\operatorname{prod}} \otimes \mathcal{P} \otimes \mathcal{A}^0_{\operatorname{dec}} \right)^* \, \text{plus soft virtual is IR finite}$$

4-flavour scheme vs. 5-flavour scheme

 $\exists \bar{b}$ @ LO

only 1 $\log \mu_f^2/m_b^2$ @ NLO $\log \mu_f^2/m_b^2$ resummed

 m_b effects can be included

 $b \in p$: 5 flavour scheme

 $\#\bar{b}$ @ LO

 $m_b = 0$ for initial state

- Comparison 4F vs 5F for single top at NLO [Campbell et.al]:
- Generally good agreement already at NLO
- A detailed single-top analysis POWHEG vs aMC@NLO in 4F (and 4F vs 5F including parton showers) is under way [Frederix, Re, Torrielli]

4-flavour scheme vs. 5-flavour scheme

- general analysis 4F vs 5F [Maltoni, Ridolfi, Ubiali (1203.6393)]
- resummation of $\log \mu_f^2/m_x^2$ numerically not very important (except for x large)
- scale in log suppressed through phase space

tools (no claim for completeness!)

- resummed total cross sections available
 - for s- and t-channel by two groups
 - for Wt, Ht by one group
- several fixed-order NLO calculations (including decay and spin correlations) available
- off-shell effects at NLO available
- all channels (s-, t-, W t, H t) implemented in POWHEG and MC@NLO
- t-channel in 4 flavour scheme (very soon) available in POWHEG and (a)MC@NLO
- all channels (s-, t-, W t, H t) available in WHIZARD
 - up to 6 final state partons at LO
 - including "background" diagrams
 - BSM models implemented
 - including interface to shower

issues / questions

- open issues for NNLL resummed cross section
 - impact of collinear logs has to be clarified
- parton-shower compatible definition of single-top processes
 - is a $p_T(J_b) < p_T^{
 m veto}$ or a $|M_{W|J_b} m_t| \gg \Gamma_t$ cut a viable way to suppress $t\bar{t}$ contributions to Wt production?
- is there any point in doing NNLO calculation? (apart from being a nice technical exercise)
- BSM: anomalous couplings vs. effective theory
- will single-top ever be more than simply a test?
 - lacktriangle how far can we go with V_{tb}
 - can we measure m_t via single top
 - can we learn something about pdf
 - from comparing single top vs. single anti-top cross sections
 - using $(\Delta \text{ pdf}) > (\Delta \text{ scale})$ for resummed cross sections