
Introduction to Statistics 
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CERN Summer Student Lecture Program  2012  

 

 … and Machine Learning 
(in the last lecture)  

Helge Voss 



Outline 

 Why Statistics 

measurements etc… 

review of (some) probability distributions and some of their properties 

 What is Probability :   

axioms 

frequentist / Bayesian  interpretation 

 Lecture 2-4 

Hypothesis testing 

Maximum Likelihood fit 

Confidence belts 

Monte Carlo Methods (Random numbers/Integration/Re-sampling) 

Machine Learning / Pattern Recognition 
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HEP Experiments 

“typical” Higgs event  (CMS simulation):  

 ‘hidden amongst ’ ~23 underlying  events 

 and rare O(10-11) 
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HEP Experiments 

And while a the needle in the hay-stack would be already in one piece 

 particles: reconstructed from its decay products 

 decay products: reconstructed from detector signatures 

 etc..  

“statistical/random” 

processes 
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Interpreting your Measurement 
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 What do we REALLY mean by:   

 

 mW = 80.399+/- 0.023 ;    

 MHiggs> 114.4GeV/c2  @95%CL 

 

(and… how do others “interpret” this?) 

 

 these things are results of: 

 involved measurements 

 many “assumptions”/“Interpretations” 

 

 correct statistical interpretation: 

 most ‘honest’ presentation of the result  

 unless:  provide all details/assumptions that went into  obtaining 

the results 

 

 needed to correctly combine with others  (unless we do a fully 

combined analysis) 



Interpreting  Measurements 
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 Be able to understand the latest 

Higgs search plots! 

 rather than being fooled by “statistics” 

Expected  
from SM  
Higgs at 
given mH 



Why Bother with Statistics? 

 Physics laws have exact numbers:   𝑭 = 𝒎 ⋅ 𝒂  

derived from  “non-exact” measurements 

“non exact”    ⟺  statistically distributed 

know how to handle samples drawn from distributions 

 extract parameters of underlying (parent) distribution 

(i.e. mean value etc..) 

 know what they describe  choose the right one  

 e.g. Poisson ⟷ Compound Poisson 
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 Statistics plays important role in: 

 Measurement errors 

 Random processes (quantum physics, statistical physics) 

 Fitting of model parameters 

 Deciding on model hypothesis/data selection 

 Judging significance of some “New Physics” signal 

 Monte Carlo  simulation/integration 



Statistical Distributions 

 Measurements/Results typically follow some probability 

distribution 

i.e. data is not at a fixed value, but “spreads out” in a particular way 

 

 Which type of distribution it follows depends on the particular case 

important to know the different distributions  

 be able to pick the correct one when doing the analysis 

.. and know their characteristics 

 be able to extract the “information” in the data 

 

 

Note: in statistical context: 

 instead of “data” that follows a distribution, 

 one often (typically) speaks of a “random variable” 
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Probability Distribution/Density  

of a Random Variable 
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random variable x or k :   characteristic quantity of point in sample space 

discrete variables 

𝑷 𝒌𝒊 = 𝒑𝒊 

𝒌𝒊 = 𝑵𝒐𝒃𝒔. 

 

continuous variables 

normalisation (your parameter/event space covers all possibilities) 

𝑷 𝒙 ∊ 𝒙, 𝒙 + 𝒅𝒙 = 𝒑 𝒙 𝒅𝒙 

 𝒑 𝒙 𝒅𝒙
∞

−∞

= 𝟏  𝑷 𝒌𝒊

𝒊

= 𝟏 

𝒙 = 𝒎𝒐𝒃𝒔. 

 



Bernoulli Distribution 

 2 possible outcomes: 

Yes/No 

Head/Tail 

….  

 (fair) coin: 𝑷 𝒉𝒆𝒂𝒅 = 𝒑 𝒆. 𝒈. =
𝟏

𝟐
,  𝑷 𝒕𝒂𝒊𝒍 = 𝟏 − 𝑷 𝒉𝒆𝒂𝒅 = 𝟏 − 𝒑  
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𝑷 𝒌; 𝑝 =  
𝒑

𝟏 − 𝒑
: 𝒌 = 𝒉𝒆𝒂𝒅 = 𝟏
∶ 𝒌 = 𝒕𝒂𝒊𝒍    = 𝟎

 =  𝒑𝒌 (1 − 𝒑)1−𝒌 
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Binomial Distribution 

throw 𝑵 coins:  (anything with two different possible outcomes) 

? how likely (often):   𝒌 × 𝒉𝒆𝒂𝒅 and 𝑵 − 𝒌 × 𝒕𝒂𝒊𝒍 ? 

each coin: 𝑷 𝒉𝒆𝒂𝒅 = 𝒑,     𝑷 𝒕𝒂𝒊𝒍 = 𝟏 − 𝒑  

pick 𝒌 particular coins  the probability of all having 𝒉𝒆𝒂𝒅 is:  

  𝑷 𝒌 × 𝒉𝒆𝒂𝒅 = 𝑷 𝒉𝒆𝒂𝒅 ∗ 𝑷 𝒉𝒆𝒂𝒅 …∗ 𝑷 𝒉𝒆𝒂𝒅 = 𝑷 𝒉𝒆𝒂𝒅 𝒌 

at the same time: probability that all remaining N-1 coins  land on 𝒕𝒂𝒊𝒍  

  𝑷 𝒉𝒆𝒂𝒅 𝒌 𝑷 𝑡𝑎𝑖𝑙 𝑁−𝒌 = 𝒑𝒌 (1 − 𝒑)𝑁−𝒌 

That was for 𝒌 particular coins:  

𝑵
𝑘

  possible permutations for any k coins 

Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012  

𝑃 𝒌;𝑁, 𝑝 = 𝒑𝒌 (1 − 𝒑)𝑁−𝒌 𝑵
𝑘
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Binomial Distribution 
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Examples: 

 Expectation value: sum over all possible outcomes and “average”   
  

 𝐄 𝒌 =  𝒌𝑷 𝒌 = 𝑵𝒑 

 

 Variance: 

 

 𝑽 𝒌 = 𝑵𝒑(𝟏 − 𝒑) 



Some Characteristic Quantities 

of Distributions 

13 Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012  

 Expectation value  E   (mean value): 

 

 

   

 Note: mean/expectation of 𝒇 𝒙 :          → 𝑬 𝒇 𝒙 = ∫ 𝒇 𝒙 𝑷 𝒙 𝒅𝒙 
 

 Variance (𝑽 = 𝝈𝟐,  with 𝝈: “spread”) :  𝑬 𝒙 − 𝒙 𝟐 = 𝑬 𝒙𝟐 − (𝑬 𝒙 )𝟐  

 

 higher moments: Skew:  𝑬[ 𝒙 − 𝒙 𝟑] …. 

  

discrete variables continuous variables 

𝐕 𝐤 =  𝒌 − 𝒌 𝟐𝑷 𝒌

𝒂𝒍𝒍 𝒌

 𝐕 𝒙 = ∫ 𝒙 − 𝒙 𝟐𝑷 𝒙 𝒅𝒙 

 Note: expectation and variance  properties of the full population.  

Unbiased estimates,  derived from samples taken from the distribution: 

𝑽 =
𝟏

𝒏 − 𝟏
 𝒌𝒊 − 𝒌 

𝟐𝒔𝒂𝒎𝒑𝒍𝒆𝒔

𝒊
 𝑽 =

𝟏

𝒏 − 𝟏
 𝒙𝒊 − 𝒙 𝟐

𝒔𝒂𝒎𝒑𝒍𝒆𝒔

𝒊
 

𝐄 = 𝒌 =   𝒌𝑷 𝒌

𝒂𝒍𝒍 𝒌

 E[x] = 𝒙 = ∫ 𝒙𝑷 𝒙 𝒅𝒙 



Poisson Distribution 
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 Expectation value: 

𝐄 𝒏 =  𝒏𝑷 𝒏 = 𝝁 

 Binomial distribution: Individual events with 2 possible outcomes 

 How about:  # counts in radioactive decays during 𝚫𝐭 ? 

 events happen “randomly” but there is no 2nd  

 𝚫𝐭: continuum   ≠  “N- discrete trials”   

 𝝁 : average #counts in 𝚫𝐭.    What’s the probability for 𝒏 counts? 

 Limit of Binomial distribution for 𝑵 → ∞ 𝒘𝒊𝒕𝒉 𝑵𝒑 = 𝝁 𝒇𝒊𝒙𝒆𝒅 

 Poisson 𝑷 𝒏 =
𝝁𝒏

𝒏!
𝒆−𝝁 

 Variance: 

𝑽 𝒏 = 𝝁 

 b.t.w.  it’s a good approximation of Binomials for 𝑵 ≫ 𝑵𝒑 = 𝝁 



Gaussian Distribution 
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 For large 𝝁 the Poisson distribution already looked fairly “Gaussian” 

 in fact in the limit it “becomes” Gaussian 

 just like almost everything: Central Limit Theorem   

 Gaussian is the probably the most important distribution   

𝐆𝐚𝐮𝐬𝐬:  𝑷 𝐱 =
𝟏

𝟐𝝅𝝈𝟐
𝒆
−

𝒙−𝝁 𝟐

𝟐𝝈𝟐  

 Expectation value: 

𝐄 𝒙 = 𝝁 

 Variance: 

𝑽 𝒙 = 𝝈𝟐 
 

𝑷(𝟎) 

𝑷 𝟎 𝒆−
𝟏
𝟐 

𝑷 𝟎 𝒆−
𝟐𝟐

𝟐  

 Probability content: 

 𝑷 𝒙 𝒅𝒙
𝝈

−𝝈

≅ 𝟔𝟖% 𝑷 𝒙 𝒅𝒙
𝟐𝝈

−𝟐𝝈

≅ 𝟗𝟓%     

 

 



Central Limit Theorem 

 The mean y of n samples xi from any distribution D with well defined  

expectation value and variance    lim
𝑛→∞

→  Gaussian  
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𝑫:  𝑬𝑫 𝒙 = 𝝁; 𝑽𝑫 𝒙 = 𝝈𝑫
𝟐      

summation
     𝑬𝑮𝒂𝒖𝒔𝒔 𝒚 = 𝝁; 𝑽𝑮𝒂𝒖𝒔𝒔 𝒚 =

𝝈𝑫
𝟐

𝒏
 

 Averaging reduces 

the error 

n=1 

n=5 n=4 

n=2 n=3 

n=6 



Central Limit Theorem 

 Yes, even if D doesn‘t look „Gaussian“ at all !   

e.g. „exponential distribution“ 
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Measurement errors: 

 Typically: many 

contributions 

 Gaussian ! 

n=1 

n=5 n=4 

n=2 n=3 

n=6 

n=1 

n=18 n=6 

n=2 n=3 

n=36 



Some Other Distributions 

 Exponential – distribution 

time distr. until particle decays (in it’s own rest frame) 

 Breit−Wigner (Cauchy) – distribution 

mass peaks (resonance curve) 

 𝝌𝟐 − distribution 

sum of squares of Gaussian distributed variables 

 goodness-of-fit 

 Landau – distribution 

charge deposition in a silicon detector 

 Uniform – distribution 

 … and many more:  
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𝝌𝟐 



2D Gaussian 
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𝑷 𝐱, 𝐲 =
𝟏

𝟐𝝅𝝈𝒙
𝟐
𝒆
−

𝒙−𝝁𝒙
𝟐

𝟐𝝈𝒙
𝟐

 
𝟏

𝟐𝝅𝝈𝒚
𝟐
𝒆
−

𝒚−𝝁𝒚
𝟐

𝟐𝝈𝒚
𝟐

 

 If the 2 variables are independent:  
𝑷 𝒙, 𝒚 = 𝑷 𝒙 𝑷(𝒚)  

 Correlated Gaussians ⟺ 
transformed (rotated) variables 

𝑷 𝒙 =
𝟏

𝟐𝝅 𝒅𝒆𝒕(𝑽)
𝒆−

𝟏
𝟐 𝒙−𝝁 𝑻𝑽−𝟏 (𝒙−𝝁)

 

𝒙𝟏 − 𝒙𝟏  

𝒙
𝟐
−

𝒙
𝟐

 
with 

V=
𝒙𝟏
𝟐 − 𝒙𝟏

𝟐 𝒙𝟏𝒙𝟐 − 𝒙𝟏 𝒙𝟐

𝒙𝟏𝒙𝟐 − 𝒙𝟏 𝒙𝟐 𝒙𝟐
𝟐 − 𝒙𝟐

𝟐
 
co-

variance 

matrix 

x− 𝒙  

y
−

𝒚
 



Conditioning and Marginalisation 
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↔ consider some variable in the joint PDF(x,y) as constant (given): 

𝑷 𝑨 𝑩 =
𝑷 𝑨 ∩ 𝑩

𝑷 𝑩
=

𝒑 𝒙, 𝒚 𝒅𝒙𝒅𝒚

𝒑𝒙 𝒙 𝒅𝒙
 

Glen Cowan: Statistical data analysis 

 marginalisation: If you are not interested in the dependence on “x”  

   project onto “y” (integrate “x out”)  

 conditional probability: 



Cumulative Distribution 
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Cumulative distribution: 

PDF  

(probability density function) 

 𝑝 𝑥′ 𝑑𝑥′
𝑥

−∞

≡ 𝑃(𝑥) 

 𝒑 𝒙 : probability distribution for some “measurement” 𝒙 under the 

assumption of some model (parameter)  

Example of Cumulative distribution usage: 

 imagine you measure 𝒙𝒐𝒃𝒔 

 how often expect I s.th. as far “off” the expectation (mean) value 

 1-∫ 𝑝 𝑥′ 𝑑𝑥′
𝑥𝑜𝑏𝑠

−∞
≡ 𝑝 − 𝑣𝑎𝑙𝑢𝑒 for observing something at least as 

far away from what you expect  

   (one tailed as in example if “new physics” would be at higher x) 

 similar: 𝝌𝟐-Probability 

→ 𝒑 𝒙 = 𝒅𝑷(𝒙)/𝒅𝒙 

we will come back to this... 

p
(x

) 

P
(x

) 

𝒙𝒐𝒃𝒔 



Functions of Random Variables 

 A function of a random variable is 

itself a random variable. 

 𝒙 with PDF  𝒑(𝒙) 

function 𝒇(𝒙)   

 e.g. extraction of a physics 

parameter from a measurement 

 PDF 𝒈 𝒇 ? 

𝒈 𝒇 𝒅𝒇 =  𝒑 𝒙 𝒅𝒙
𝒅𝑺

 

here: 𝒅𝑺 =region of 𝒙 space for which 

 𝒇 is in 𝒇, 𝒇 + 𝚫𝒇  

 For one-variable case with unique 

inverse this is simply: 
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𝒈 𝒇 𝒅𝒇 = 𝒑 𝒙 𝒅𝒙   →    𝒈 𝒇 = 𝒑 𝒙 𝒇
𝒅𝒙

𝒅𝒇
 

Note: this is NOT the standard error propagation but the FULL PDF ! 

𝒅𝒇 

𝒇
(𝒙

) 

Glen Cowan: Statistical data analysis 



Error Propagation 
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 Either generate the FULL PDF of 𝒇(𝒙) based on the PDF for 𝒙, 𝒑(𝒙) 
 often the full PDF for x is not known, but only a mean value 𝝁 and 

variance 𝝈𝟐 (covariance matrix) have been estimated 𝒙   and 𝑽  

 then expand 𝒇 𝒙  around 𝝁 

𝒇 𝒙 ≃ 𝒇 𝝁 +
𝒅𝒇

𝒅𝒙
 𝒙=𝝁 𝒙 − 𝝁   

 𝑬 𝒇 𝒙 ≃ 𝒇 𝝁       (as: 𝑬 𝒙 − 𝝁 = 𝟎) 

 the “usual” formula   𝝈𝒚 =
𝒅𝒇

𝒅𝒙
 𝒙 𝝈𝒙  

 several variables  covariance matrix and partial derivatives 

now let: 𝒇 𝝁 = 𝒇 𝒙  and write as 𝒚  

 𝒚 − 𝒚 ≃ (𝒙 − 𝒙 )
𝒅𝒇

𝒅𝒙
 𝒙  

 𝑬 𝒚 − 𝒚 𝟐 =
𝒅𝒇

𝒅𝒙
 𝒙 

𝟐
𝑬 𝒙 − 𝒙 𝟐  

 𝝈𝒚
𝟐 =

𝒅𝒇

𝒅𝒙
 𝒙 

𝟐
 𝝈𝒙

𝟐 

Beware: Error propagation 

assumes linearity (1st term 

in Taylor expansion)  



What is Probability 

 Axioms of probability: Kolmogorov (1933) 

 𝑷 𝑨 ≥ 𝟎 

 ∫ 𝑷 𝑨 𝒅𝑼 = 𝟏
𝑼

 

 if: (𝑨 𝐚𝐧𝐝 𝑩) ≡ (𝑨 ∩ 𝑩) = 𝟎  

   (i.e disjoint/independent/exclusive)  

   𝑷 𝑨 𝐨𝐫 𝑩 ≡  𝑨 ∪ 𝑩 = 𝑷 𝑨 + 𝑷(𝑩) 

                                                                                           
  define e.g.:  conditional probability   

            𝑷 𝑨 𝑩 ≡ 𝑷(𝑨 𝐠𝐢𝐯𝐞𝐧 𝑩 is true) =
𝑷 𝑨∩𝑩

𝑷 𝑩
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A 

Universe 

A 
B 

A∩B 

Venn-Diagram 

B 

A 

Universe 

Venn-Diagram 



What is Probability 
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1) a measure of how likely an event will occur, expressed 
as a the ratio of favourable—to—all possible cases in 
repeatable trials  

  

 

 

 

 

P(“Event”) = lim
𝑛→∞

( #outcome is "Event"
𝑛−"𝑡𝑟𝑖𝑎𝑙𝑠"

 ) 

 Bayesian probability: 

 P(“Event”): degree of believe that “Event” is going 

to happen  no need for “repeatable trails” 

 degree of believe (in view of the data AND previous 

knowledge(believe) about the parameter) that a 

parameter has a certain “true” value  

 

2) the “degree of believe” that an event is going to happen 

 Frequentist (classical) probability 

 Axioms of probability:   pure “set-theory” 



Frequentist vs. Bayesian 
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Bayes’ Theorem 𝑷 𝑨 𝑩 =
𝑷(𝑩 𝑨)𝑷 𝑨

𝑷(𝑩)
 = 𝑷 𝑩 𝑨  

𝑷 𝑨

𝑷 𝑩
 

 This follows simply from the “conditional probabilities”: 



Derivation of Bayes’ Theorem 
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… in picture  …taken from Bob Cousins  



Frequentist vs. Bayesian 
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Bayes’ Theorem 𝑷 𝑨 𝑩 =
𝑷(𝑩 𝑨)𝑷 𝑨

𝑷(𝑩)
 = 𝑷 𝑩 𝑨  

𝑷 𝑨

𝑷 𝑩
 

 This follows simply from the “conditional probabilities”: 

𝑷 𝑨 𝑩 𝑷 𝑩 = 𝑷 𝑨 ∩ 𝑩) = 𝑷(𝑩 ∩ 𝑨 = 𝑷 𝑩 𝑨 𝑷(𝑨) 

𝑷 𝑨 𝑩 𝑷 𝑩 = 𝑷 𝑩 𝑨 𝑷(𝑨) 

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 𝑷 𝑨

𝑷 𝑩
 



Frequentist vs. Bayesian 
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Bayes’ Theorem 𝑷 𝝁 𝒏 =
𝑷(𝒏 𝝁)𝑷 𝝁

𝑷(𝒏)
 

B.t.w.:   Nobody doubts Bayes’ Theorem:  

discussion starts ONLY if it is used to turn  

 

frequentist statements: 

 

 

 

 into Bayesian probability statements: 

 probability of the observed data given a certain model: 𝑷(𝑫𝒂𝒕𝒂 𝑴𝒐𝒅𝒆𝒍)  
 

 

 

 probability of a the model begin correct (given data): 𝑷 𝑴𝒐𝒅𝒆𝒍 𝑫𝒂𝒕𝒂) 

𝑷 𝒏 𝝁 : Likelihood function  
𝑷 𝝁 𝒏 :posterior probability of μ  

𝑷 𝝁 : the “prior” 

𝑷 𝒏 : just some normalisation 

 … there can be heated debates about ‘pro’ and ‘cons’ of either…. 



P (Data|Theory) ≠ P (Theory|Data) 
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Theory  =   female (hypothesis)  .. male (alternative) 

Data      =   pregnant or not pregnant 

P (pregnant | female) ~ 2-3%        but       P (female | pregnant)   = ??  

 easy Example: 

 Higgs search at LEP:   the statement 

  the probability that the data is in agreement with the Standard 

Model background is less than 1%  (i.e. P(data| SMbkg)  < 1%)      

went out to the press and got turned round to: 

 

P(data|SMbkg)  =  P(SMbkg|data) < 1%  P(Higgs|data) > 99% ! 

 
WRONG! 

o.k… but what DOES it say? 
 



The correct frequentist 

interpretation 
we know: P (Data|Theory) ≠ P (Theory|Data) 

rather: Bayes Theorem:     P (Data|Theory) = P (Theory|Data) 
𝐏(𝐓𝐡𝐞𝐨𝐫𝐲)

𝐏(𝐃𝐚𝐭𝐚)
 

Frequentists answer ONLY: P (Data|Theory)   

… although.. let’s be honest, we are all interested in P(Theory…)  
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We only learn about the “probability” to observe certain data under a 

given theory. Without knowledge of how likely the theory (or a 

possible “alternative” theory ) is .. that doesn’t say anything about 

how unlikely this makes our current theory ! 

Later: we’ll define “confidence levels” … i.e. if P(data) < 5%, discard 

theory.  

 can accept/discard theory and state how often/likely we will be 

wrong in doing so. But again: It does not say how “likely” the 

theory itself (or the alternative) is true 

 note the subtle difference !! 



Be aware ! 

BBC:  2 July 2012:  US sees stronger hints of Higgs 

By Paul Rincon Science editor, BBC News website  

 

 The signal is seen at the 2.9-sigma level of certainty, which means 

there is roughly a one in 1,000 chance that the result is attributable to 

some statistical quirk in the data 

 

 The number of standard deviations, or sigmas, is a measure of how 

unlikely it is that an experimental result is simply down to chance 

rather than a real effect 
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Frequentist vs. Bayesian 
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 Certainly: both have their “right-to-exist” 

 

 Some “probably” reasonable and interesting questions cannot even 

be ASKED in a frequentist framework :  

 
 “How much do I trust the simulation” 

 “How likely is it that it will raining tomorrow?” 

 “How likely is it that climate change is going to…  

 

 after all.. the “Bayesian” answer sounds much more like what you 

really want to know: i.e.   

 “How likely is the “parameter value” to be correct/true ?” 

 

 BUT: 

 NO Bayesian interpretation  w/o “prior probability” of the parameter 

 

 where do we get that from? 

 all the actual measurement can provide is “frequentist”! 

  



Bayesian Prior Probabilties 

 “flat” prior 𝝅(𝜽) to state “no previous” knowledge (assumptions) 

about the theory? 

often done, BUT WRONG:  

 e.g. flat prior in 𝑀𝐻𝑖𝑔𝑔𝑠  not flat in 𝑀𝐻𝑖𝑔𝑔𝑠
2  

Choose a prior that is invariant under parameter transformations 

   Jeffrey’s Prior   “objective Bayesian”: 

 “flat” prior in Fisher’s information space 

 𝜋 𝜃 ∝ I 𝜃                      (𝜋 𝜃 ∝ det I 𝜃    if several parameters) 
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𝐼 𝜃 = −𝐸𝑥[
𝜕2

𝜕𝜃2 𝑙𝑜𝑔(𝑓(𝑥 ; 𝜃)] :  

𝑓 𝑥; 𝜃 : Likelihood function of 𝜃, probability to observe 𝑥 for a give parameter 𝜃 

amount of “information” that data 𝑥  is ‘expected’ to contain about the 

parameter 𝜃 

 personal remark: nice idea, but “WHY” would you want to dot that? 

 still use a “arbitrary” prior, only make sure everyone does the same way 

 loose all “advantages” of using a “reasonable” prior if you choose already to 

use a Bayesian interpretation! 



Frequentist or Bayesian? 
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“Bayesians address the question everyone is 

interested in, by using assumptions no-one believes” 

“Frequentists use impeccable logic to deal with an 

issue of no interest to anyone” 

Louis Lyons, Academic Lecture at Fermilab, August 17, 2004 

 Traditionally: most scientists are/were “frequentists” 

 no NEED to make “decisions” (well.. unless you want to 

announce the discovery of the Higgs particle..) 

 it’s ENOUGH to present data, and how likely they are under 

certain scenarios  

 keep doing so and combine measurements  

 Bayesians are growing 

 well, at least now we have the means to do lots of prior 

comparisons: Computing power/ Markov Chain Monte Carlos 



Summary 

 Statistics is everywhere in science 

need to be able to use it correctly  

need to know about the available (possible) distributions 

 What is probability? 

the basics of “statistics” 

axioms 

 frequentist interpretation 

 Bayesian interpretation 

 

 Tomorrow: How to use these things to answer your scientific 

questions 
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