
Introduction to Statistics 
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CERN Summer Student Lecture Program  2012  

 

 … and Machine Learning 
(in the last lecture)  

Helge Voss 



Outline 

 Why Statistics 

measurements etc… 

review of (some) probability distributions and some of their properties 

 What is Probability :   

axioms 

frequentist / Bayesian  interpretation 

 Lecture 2-4 

Hypothesis testing 

Maximum Likelihood fit 

Confidence belts 

Monte Carlo Methods (Random numbers/Integration/Re-sampling) 

Machine Learning / Pattern Recognition 
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HEP Experiments 

“typical” Higgs event  (CMS simulation):  

 ‘hidden amongst ’ ~23 underlying  events 

 and rare O(10-11) 
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HEP Experiments 

And while a the needle in the hay-stack would be already in one piece 

 particles: reconstructed from its decay products 

 decay products: reconstructed from detector signatures 

 etc..  

“statistical/random” 

processes 
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Interpreting your Measurement 
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 What do we REALLY mean by:   

 

 mW = 80.399+/- 0.023 ;    

 MHiggs> 114.4GeV/c2  @95%CL 

 

(and… how do others “interpret” this?) 

 

 these things are results of: 

 involved measurements 

 many “assumptions”/“Interpretations” 

 

 correct statistical interpretation: 

 most ‘honest’ presentation of the result  

 unless:  provide all details/assumptions that went into  obtaining 

the results 

 

 needed to correctly combine with others  (unless we do a fully 

combined analysis) 



Interpreting  Measurements 
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 Be able to understand the latest 

Higgs search plots! 

 rather than being fooled by “statistics” 

Expected  
from SM  
Higgs at 
given mH 



Why Bother with Statistics? 

 Physics laws have exact numbers:   𝑭 = 𝒎 ⋅ 𝒂  

derived from  “non-exact” measurements 

“non exact”    ⟺  statistically distributed 

know how to handle samples drawn from distributions 

 extract parameters of underlying (parent) distribution 

(i.e. mean value etc..) 

 know what they describe  choose the right one  

 e.g. Poisson ⟷ Compound Poisson 
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 Statistics plays important role in: 

 Measurement errors 

 Random processes (quantum physics, statistical physics) 

 Fitting of model parameters 

 Deciding on model hypothesis/data selection 

 Judging significance of some “New Physics” signal 

 Monte Carlo  simulation/integration 



Statistical Distributions 

 Measurements/Results typically follow some probability 

distribution 

i.e. data is not at a fixed value, but “spreads out” in a particular way 

 

 Which type of distribution it follows depends on the particular case 

important to know the different distributions  

 be able to pick the correct one when doing the analysis 

.. and know their characteristics 

 be able to extract the “information” in the data 

 

 

Note: in statistical context: 

 instead of “data” that follows a distribution, 

 one often (typically) speaks of a “random variable” 
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Probability Distribution/Density  

of a Random Variable 
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random variable x or k :   characteristic quantity of point in sample space 

discrete variables 

𝑷 𝒌𝒊 = 𝒑𝒊 

𝒌𝒊 = 𝑵𝒐𝒃𝒔. 

 

continuous variables 

normalisation (your parameter/event space covers all possibilities) 

𝑷 𝒙 ∊ 𝒙, 𝒙 + 𝒅𝒙 = 𝒑 𝒙 𝒅𝒙 

 𝒑 𝒙 𝒅𝒙
∞

−∞

= 𝟏  𝑷 𝒌𝒊

𝒊

= 𝟏 

𝒙 = 𝒎𝒐𝒃𝒔. 

 



Bernoulli Distribution 

 2 possible outcomes: 

Yes/No 

Head/Tail 

….  

 (fair) coin: 𝑷 𝒉𝒆𝒂𝒅 = 𝒑 𝒆. 𝒈. =
𝟏

𝟐
,  𝑷 𝒕𝒂𝒊𝒍 = 𝟏 − 𝑷 𝒉𝒆𝒂𝒅 = 𝟏 − 𝒑  
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𝑷 𝒌; 𝑝 =  
𝒑

𝟏 − 𝒑
: 𝒌 = 𝒉𝒆𝒂𝒅 = 𝟏
∶ 𝒌 = 𝒕𝒂𝒊𝒍    = 𝟎

 =  𝒑𝒌 (1 − 𝒑)1−𝒌 
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Binomial Distribution 

throw 𝑵 coins:  (anything with two different possible outcomes) 

? how likely (often):   𝒌 × 𝒉𝒆𝒂𝒅 and 𝑵 − 𝒌 × 𝒕𝒂𝒊𝒍 ? 

each coin: 𝑷 𝒉𝒆𝒂𝒅 = 𝒑,     𝑷 𝒕𝒂𝒊𝒍 = 𝟏 − 𝒑  

pick 𝒌 particular coins  the probability of all having 𝒉𝒆𝒂𝒅 is:  

  𝑷 𝒌 × 𝒉𝒆𝒂𝒅 = 𝑷 𝒉𝒆𝒂𝒅 ∗ 𝑷 𝒉𝒆𝒂𝒅 …∗ 𝑷 𝒉𝒆𝒂𝒅 = 𝑷 𝒉𝒆𝒂𝒅 𝒌 

at the same time: probability that all remaining N-1 coins  land on 𝒕𝒂𝒊𝒍  

  𝑷 𝒉𝒆𝒂𝒅 𝒌 𝑷 𝑡𝑎𝑖𝑙 𝑁−𝒌 = 𝒑𝒌 (1 − 𝒑)𝑁−𝒌 

That was for 𝒌 particular coins:  

𝑵
𝑘

  possible permutations for any k coins 
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𝑃 𝒌;𝑁, 𝑝 = 𝒑𝒌 (1 − 𝒑)𝑁−𝒌 𝑵
𝑘
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Binomial Distribution 
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Examples: 

 Expectation value: sum over all possible outcomes and “average”   
  

 𝐄 𝒌 =  𝒌𝑷 𝒌 = 𝑵𝒑 

 

 Variance: 

 

 𝑽 𝒌 = 𝑵𝒑(𝟏 − 𝒑) 



Some Characteristic Quantities 

of Distributions 
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 Expectation value  E   (mean value): 

 

 

   

 Note: mean/expectation of 𝒇 𝒙 :          → 𝑬 𝒇 𝒙 = ∫ 𝒇 𝒙 𝑷 𝒙 𝒅𝒙 
 

 Variance (𝑽 = 𝝈𝟐,  with 𝝈: “spread”) :  𝑬 𝒙 − 𝒙 𝟐 = 𝑬 𝒙𝟐 − (𝑬 𝒙 )𝟐  

 

 higher moments: Skew:  𝑬[ 𝒙 − 𝒙 𝟑] …. 

  

discrete variables continuous variables 

𝐕 𝐤 =  𝒌 − 𝒌 𝟐𝑷 𝒌

𝒂𝒍𝒍 𝒌

 𝐕 𝒙 = ∫ 𝒙 − 𝒙 𝟐𝑷 𝒙 𝒅𝒙 

 Note: expectation and variance  properties of the full population.  

Unbiased estimates,  derived from samples taken from the distribution: 

𝑽 =
𝟏

𝒏 − 𝟏
 𝒌𝒊 − 𝒌 

𝟐𝒔𝒂𝒎𝒑𝒍𝒆𝒔

𝒊
 𝑽 =

𝟏

𝒏 − 𝟏
 𝒙𝒊 − 𝒙 𝟐

𝒔𝒂𝒎𝒑𝒍𝒆𝒔

𝒊
 

𝐄 = 𝒌 =   𝒌𝑷 𝒌

𝒂𝒍𝒍 𝒌

 E[x] = 𝒙 = ∫ 𝒙𝑷 𝒙 𝒅𝒙 



Poisson Distribution 

14 Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012  

 Expectation value: 

𝐄 𝒏 =  𝒏𝑷 𝒏 = 𝝁 

 Binomial distribution: Individual events with 2 possible outcomes 

 How about:  # counts in radioactive decays during 𝚫𝐭 ? 

 events happen “randomly” but there is no 2nd  

 𝚫𝐭: continuum   ≠  “N- discrete trials”   

 𝝁 : average #counts in 𝚫𝐭.    What’s the probability for 𝒏 counts? 

 Limit of Binomial distribution for 𝑵 → ∞ 𝒘𝒊𝒕𝒉 𝑵𝒑 = 𝝁 𝒇𝒊𝒙𝒆𝒅 

 Poisson 𝑷 𝒏 =
𝝁𝒏

𝒏!
𝒆−𝝁 

 Variance: 

𝑽 𝒏 = 𝝁 

 b.t.w.  it’s a good approximation of Binomials for 𝑵 ≫ 𝑵𝒑 = 𝝁 



Gaussian Distribution 
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 For large 𝝁 the Poisson distribution already looked fairly “Gaussian” 

 in fact in the limit it “becomes” Gaussian 

 just like almost everything: Central Limit Theorem   

 Gaussian is the probably the most important distribution   

𝐆𝐚𝐮𝐬𝐬:  𝑷 𝐱 =
𝟏

𝟐𝝅𝝈𝟐
𝒆
−

𝒙−𝝁 𝟐

𝟐𝝈𝟐  

 Expectation value: 

𝐄 𝒙 = 𝝁 

 Variance: 

𝑽 𝒙 = 𝝈𝟐 
 

𝑷(𝟎) 

𝑷 𝟎 𝒆−
𝟏
𝟐 

𝑷 𝟎 𝒆−
𝟐𝟐

𝟐  

 Probability content: 

 𝑷 𝒙 𝒅𝒙
𝝈

−𝝈

≅ 𝟔𝟖% 𝑷 𝒙 𝒅𝒙
𝟐𝝈

−𝟐𝝈

≅ 𝟗𝟓%     

 

 



Central Limit Theorem 

 The mean y of n samples xi from any distribution D with well defined  

expectation value and variance    lim
𝑛→∞

→  Gaussian  
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𝑫:  𝑬𝑫 𝒙 = 𝝁; 𝑽𝑫 𝒙 = 𝝈𝑫
𝟐      

summation
     𝑬𝑮𝒂𝒖𝒔𝒔 𝒚 = 𝝁; 𝑽𝑮𝒂𝒖𝒔𝒔 𝒚 =

𝝈𝑫
𝟐

𝒏
 

 Averaging reduces 

the error 

n=1 

n=5 n=4 

n=2 n=3 

n=6 



Central Limit Theorem 

 Yes, even if D doesn‘t look „Gaussian“ at all !   

e.g. „exponential distribution“ 
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Measurement errors: 

 Typically: many 

contributions 

 Gaussian ! 

n=1 

n=5 n=4 

n=2 n=3 

n=6 

n=1 

n=18 n=6 

n=2 n=3 

n=36 



Some Other Distributions 

 Exponential – distribution 

time distr. until particle decays (in it’s own rest frame) 

 Breit−Wigner (Cauchy) – distribution 

mass peaks (resonance curve) 

 𝝌𝟐 − distribution 

sum of squares of Gaussian distributed variables 

 goodness-of-fit 

 Landau – distribution 

charge deposition in a silicon detector 

 Uniform – distribution 

 … and many more:  
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𝝌𝟐 



2D Gaussian 
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𝑷 𝐱, 𝐲 =
𝟏

𝟐𝝅𝝈𝒙
𝟐
𝒆
−

𝒙−𝝁𝒙
𝟐

𝟐𝝈𝒙
𝟐

 
𝟏

𝟐𝝅𝝈𝒚
𝟐
𝒆
−

𝒚−𝝁𝒚
𝟐

𝟐𝝈𝒚
𝟐

 

 If the 2 variables are independent:  
𝑷 𝒙, 𝒚 = 𝑷 𝒙 𝑷(𝒚)  

 Correlated Gaussians ⟺ 
transformed (rotated) variables 

𝑷 𝒙 =
𝟏

𝟐𝝅 𝒅𝒆𝒕(𝑽)
𝒆−

𝟏
𝟐 𝒙−𝝁 𝑻𝑽−𝟏 (𝒙−𝝁)

 

𝒙𝟏 − 𝒙𝟏  

𝒙
𝟐
−

𝒙
𝟐

 
with 

V=
𝒙𝟏
𝟐 − 𝒙𝟏

𝟐 𝒙𝟏𝒙𝟐 − 𝒙𝟏 𝒙𝟐

𝒙𝟏𝒙𝟐 − 𝒙𝟏 𝒙𝟐 𝒙𝟐
𝟐 − 𝒙𝟐

𝟐
 
co-

variance 

matrix 

x− 𝒙  

y
−

𝒚
 



Conditioning and Marginalisation 
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↔ consider some variable in the joint PDF(x,y) as constant (given): 

𝑷 𝑨 𝑩 =
𝑷 𝑨 ∩ 𝑩

𝑷 𝑩
=

𝒑 𝒙, 𝒚 𝒅𝒙𝒅𝒚

𝒑𝒙 𝒙 𝒅𝒙
 

Glen Cowan: Statistical data analysis 

 marginalisation: If you are not interested in the dependence on “x”  

   project onto “y” (integrate “x out”)  

 conditional probability: 



Cumulative Distribution 
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Cumulative distribution: 

PDF  

(probability density function) 

 𝑝 𝑥′ 𝑑𝑥′
𝑥

−∞

≡ 𝑃(𝑥) 

 𝒑 𝒙 : probability distribution for some “measurement” 𝒙 under the 

assumption of some model (parameter)  

Example of Cumulative distribution usage: 

 imagine you measure 𝒙𝒐𝒃𝒔 

 how often expect I s.th. as far “off” the expectation (mean) value 

 1-∫ 𝑝 𝑥′ 𝑑𝑥′
𝑥𝑜𝑏𝑠

−∞
≡ 𝑝 − 𝑣𝑎𝑙𝑢𝑒 for observing something at least as 

far away from what you expect  

   (one tailed as in example if “new physics” would be at higher x) 

 similar: 𝝌𝟐-Probability 

→ 𝒑 𝒙 = 𝒅𝑷(𝒙)/𝒅𝒙 

we will come back to this... 

p
(x

) 

P
(x

) 

𝒙𝒐𝒃𝒔 



Functions of Random Variables 

 A function of a random variable is 

itself a random variable. 

 𝒙 with PDF  𝒑(𝒙) 

function 𝒇(𝒙)   

 e.g. extraction of a physics 

parameter from a measurement 

 PDF 𝒈 𝒇 ? 

𝒈 𝒇 𝒅𝒇 =  𝒑 𝒙 𝒅𝒙
𝒅𝑺

 

here: 𝒅𝑺 =region of 𝒙 space for which 

 𝒇 is in 𝒇, 𝒇 + 𝚫𝒇  

 For one-variable case with unique 

inverse this is simply: 
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𝒈 𝒇 𝒅𝒇 = 𝒑 𝒙 𝒅𝒙   →    𝒈 𝒇 = 𝒑 𝒙 𝒇
𝒅𝒙

𝒅𝒇
 

Note: this is NOT the standard error propagation but the FULL PDF ! 

𝒅𝒇 

𝒇
(𝒙

) 

Glen Cowan: Statistical data analysis 



Error Propagation 
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 Either generate the FULL PDF of 𝒇(𝒙) based on the PDF for 𝒙, 𝒑(𝒙) 
 often the full PDF for x is not known, but only a mean value 𝝁 and 

variance 𝝈𝟐 (covariance matrix) have been estimated 𝒙   and 𝑽  

 then expand 𝒇 𝒙  around 𝝁 

𝒇 𝒙 ≃ 𝒇 𝝁 +
𝒅𝒇

𝒅𝒙
 𝒙=𝝁 𝒙 − 𝝁   

 𝑬 𝒇 𝒙 ≃ 𝒇 𝝁       (as: 𝑬 𝒙 − 𝝁 = 𝟎) 

 the “usual” formula   𝝈𝒚 =
𝒅𝒇

𝒅𝒙
 𝒙 𝝈𝒙  

 several variables  covariance matrix and partial derivatives 

now let: 𝒇 𝝁 = 𝒇 𝒙  and write as 𝒚  

 𝒚 − 𝒚 ≃ (𝒙 − 𝒙 )
𝒅𝒇

𝒅𝒙
 𝒙  

 𝑬 𝒚 − 𝒚 𝟐 =
𝒅𝒇

𝒅𝒙
 𝒙 

𝟐
𝑬 𝒙 − 𝒙 𝟐  

 𝝈𝒚
𝟐 =

𝒅𝒇

𝒅𝒙
 𝒙 

𝟐
 𝝈𝒙

𝟐 

Beware: Error propagation 

assumes linearity (1st term 

in Taylor expansion)  



What is Probability 

 Axioms of probability: Kolmogorov (1933) 

 𝑷 𝑨 ≥ 𝟎 

 ∫ 𝑷 𝑨 𝒅𝑼 = 𝟏
𝑼

 

 if: (𝑨 𝐚𝐧𝐝 𝑩) ≡ (𝑨 ∩ 𝑩) = 𝟎  

   (i.e disjoint/independent/exclusive)  

   𝑷 𝑨 𝐨𝐫 𝑩 ≡  𝑨 ∪ 𝑩 = 𝑷 𝑨 + 𝑷(𝑩) 

                                                                                           
  define e.g.:  conditional probability   

            𝑷 𝑨 𝑩 ≡ 𝑷(𝑨 𝐠𝐢𝐯𝐞𝐧 𝑩 is true) =
𝑷 𝑨∩𝑩

𝑷 𝑩
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A 

Universe 

A 
B 

A∩B 

Venn-Diagram 

B 

A 

Universe 

Venn-Diagram 



What is Probability 
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1) a measure of how likely an event will occur, expressed 
as a the ratio of favourable—to—all possible cases in 
repeatable trials  

  

 

 

 

 

P(“Event”) = lim
𝑛→∞

( #outcome is "Event"
𝑛−"𝑡𝑟𝑖𝑎𝑙𝑠"

 ) 

 Bayesian probability: 

 P(“Event”): degree of believe that “Event” is going 

to happen  no need for “repeatable trails” 

 degree of believe (in view of the data AND previous 

knowledge(believe) about the parameter) that a 

parameter has a certain “true” value  

 

2) the “degree of believe” that an event is going to happen 

 Frequentist (classical) probability 

 Axioms of probability:   pure “set-theory” 



Frequentist vs. Bayesian 
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Bayes’ Theorem 𝑷 𝑨 𝑩 =
𝑷(𝑩 𝑨)𝑷 𝑨

𝑷(𝑩)
 = 𝑷 𝑩 𝑨  

𝑷 𝑨

𝑷 𝑩
 

 This follows simply from the “conditional probabilities”: 



Derivation of Bayes’ Theorem 
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… in picture  …taken from Bob Cousins  



Frequentist vs. Bayesian 

Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012  28 

Bayes’ Theorem 𝑷 𝑨 𝑩 =
𝑷(𝑩 𝑨)𝑷 𝑨

𝑷(𝑩)
 = 𝑷 𝑩 𝑨  

𝑷 𝑨

𝑷 𝑩
 

 This follows simply from the “conditional probabilities”: 

𝑷 𝑨 𝑩 𝑷 𝑩 = 𝑷 𝑨 ∩ 𝑩) = 𝑷(𝑩 ∩ 𝑨 = 𝑷 𝑩 𝑨 𝑷(𝑨) 

𝑷 𝑨 𝑩 𝑷 𝑩 = 𝑷 𝑩 𝑨 𝑷(𝑨) 

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 𝑷 𝑨

𝑷 𝑩
 



Frequentist vs. Bayesian 
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Bayes’ Theorem 𝑷 𝝁 𝒏 =
𝑷(𝒏 𝝁)𝑷 𝝁

𝑷(𝒏)
 

B.t.w.:   Nobody doubts Bayes’ Theorem:  

discussion starts ONLY if it is used to turn  

 

frequentist statements: 

 

 

 

 into Bayesian probability statements: 

 probability of the observed data given a certain model: 𝑷(𝑫𝒂𝒕𝒂 𝑴𝒐𝒅𝒆𝒍)  
 

 

 

 probability of a the model begin correct (given data): 𝑷 𝑴𝒐𝒅𝒆𝒍 𝑫𝒂𝒕𝒂) 

𝑷 𝒏 𝝁 : Likelihood function  
𝑷 𝝁 𝒏 :posterior probability of μ  

𝑷 𝝁 : the “prior” 

𝑷 𝒏 : just some normalisation 

 … there can be heated debates about ‘pro’ and ‘cons’ of either…. 



P (Data|Theory) ≠ P (Theory|Data) 

30 Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012  

Theory  =   female (hypothesis)  .. male (alternative) 

Data      =   pregnant or not pregnant 

P (pregnant | female) ~ 2-3%        but       P (female | pregnant)   = ??  

 easy Example: 

 Higgs search at LEP:   the statement 

  the probability that the data is in agreement with the Standard 

Model background is less than 1%  (i.e. P(data| SMbkg)  < 1%)      

went out to the press and got turned round to: 

 

P(data|SMbkg)  =  P(SMbkg|data) < 1%  P(Higgs|data) > 99% ! 

 
WRONG! 

o.k… but what DOES it say? 
 



The correct frequentist 

interpretation 
we know: P (Data|Theory) ≠ P (Theory|Data) 

rather: Bayes Theorem:     P (Data|Theory) = P (Theory|Data) 
𝐏(𝐓𝐡𝐞𝐨𝐫𝐲)

𝐏(𝐃𝐚𝐭𝐚)
 

Frequentists answer ONLY: P (Data|Theory)   

… although.. let’s be honest, we are all interested in P(Theory…)  
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We only learn about the “probability” to observe certain data under a 

given theory. Without knowledge of how likely the theory (or a 

possible “alternative” theory ) is .. that doesn’t say anything about 

how unlikely this makes our current theory ! 

Later: we’ll define “confidence levels” … i.e. if P(data) < 5%, discard 

theory.  

 can accept/discard theory and state how often/likely we will be 

wrong in doing so. But again: It does not say how “likely” the 

theory itself (or the alternative) is true 

 note the subtle difference !! 



Be aware ! 

BBC:  2 July 2012:  US sees stronger hints of Higgs 

By Paul Rincon Science editor, BBC News website  

 

 The signal is seen at the 2.9-sigma level of certainty, which means 

there is roughly a one in 1,000 chance that the result is attributable to 

some statistical quirk in the data 

 

 The number of standard deviations, or sigmas, is a measure of how 

unlikely it is that an experimental result is simply down to chance 

rather than a real effect 
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Frequentist vs. Bayesian 
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 Certainly: both have their “right-to-exist” 

 

 Some “probably” reasonable and interesting questions cannot even 

be ASKED in a frequentist framework :  

 
 “How much do I trust the simulation” 

 “How likely is it that it will raining tomorrow?” 

 “How likely is it that climate change is going to…  

 

 after all.. the “Bayesian” answer sounds much more like what you 

really want to know: i.e.   

 “How likely is the “parameter value” to be correct/true ?” 

 

 BUT: 

 NO Bayesian interpretation  w/o “prior probability” of the parameter 

 

 where do we get that from? 

 all the actual measurement can provide is “frequentist”! 

  



Bayesian Prior Probabilties 

 “flat” prior 𝝅(𝜽) to state “no previous” knowledge (assumptions) 

about the theory? 

often done, BUT WRONG:  

 e.g. flat prior in 𝑀𝐻𝑖𝑔𝑔𝑠  not flat in 𝑀𝐻𝑖𝑔𝑔𝑠
2  

Choose a prior that is invariant under parameter transformations 

   Jeffrey’s Prior   “objective Bayesian”: 

 “flat” prior in Fisher’s information space 

 𝜋 𝜃 ∝ I 𝜃                      (𝜋 𝜃 ∝ det I 𝜃    if several parameters) 
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𝐼 𝜃 = −𝐸𝑥[
𝜕2

𝜕𝜃2 𝑙𝑜𝑔(𝑓(𝑥 ; 𝜃)] :  

𝑓 𝑥; 𝜃 : Likelihood function of 𝜃, probability to observe 𝑥 for a give parameter 𝜃 

amount of “information” that data 𝑥  is ‘expected’ to contain about the 

parameter 𝜃 

 personal remark: nice idea, but “WHY” would you want to dot that? 

 still use a “arbitrary” prior, only make sure everyone does the same way 

 loose all “advantages” of using a “reasonable” prior if you choose already to 

use a Bayesian interpretation! 



Frequentist or Bayesian? 
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“Bayesians address the question everyone is 

interested in, by using assumptions no-one believes” 

“Frequentists use impeccable logic to deal with an 

issue of no interest to anyone” 

Louis Lyons, Academic Lecture at Fermilab, August 17, 2004 

 Traditionally: most scientists are/were “frequentists” 

 no NEED to make “decisions” (well.. unless you want to 

announce the discovery of the Higgs particle..) 

 it’s ENOUGH to present data, and how likely they are under 

certain scenarios  

 keep doing so and combine measurements  

 Bayesians are growing 

 well, at least now we have the means to do lots of prior 

comparisons: Computing power/ Markov Chain Monte Carlos 



Summary 

 Statistics is everywhere in science 

need to be able to use it correctly  

need to know about the available (possible) distributions 

 What is probability? 

the basics of “statistics” 

axioms 

 frequentist interpretation 

 Bayesian interpretation 

 

 Tomorrow: How to use these things to answer your scientific 

questions 
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