

Introduction to Statistics

CERN Summer Student Lecture Program 2012

Helge Voss

… and Machine Learning (in the last lecture)

Outline

Why Statistics

- **measurements etc…**
- **review of (some) probability distributions and some of their properties**
- **What is Probability :**
	- **axioms**
	- **frequentist / Bayesian interpretation**

Lecture 2-4

- **Hypothesis testing**
- **Maximum Likelihood fit**
- **Confidence belts**
- **Monte Carlo Methods (Random numbers/Integration/Re-sampling)**
- **Machine Learning / Pattern Recognition**

HEP Experiments

HEP Experiments

And while a the needle in the hay-stack would be already in one piece

- $→$ **particles: reconstructed from its decay products**
- **decay products: reconstructed from detector signatures**
- \rightarrow etc..

Interpreting your Measurement

- **What do we REALLY mean by:**
	- $m_w = 80.399 + 0.023$;
	- **MHiggs> 114.4GeV/c²@95%CL**

(and… how do others "interpret" this?)

- **these things are results of:**
	- **involved measurements**
	- **many "assumptions"/"Interpretations"**
- **correct statistical interpretation:**
- → most 'honest' presentation of the result
	- **unless: provide all details/assumptions that went into obtaining the results**

needed to correctly combine with others (unless we do a fully combined analysis)

Interpreting Measurements

Why Bother with Statistics?

- **Physics laws have exact numbers:** $F = m \cdot a$
	- **derived from "non-exact" measurements**
	- **→ "non exact"** \iff statistically distributed
	- **know how to handle samples drawn from distributions**
		- extract parameters of underlying (parent) distribution (i.e. mean value etc..)
		- **know what they describe** \rightarrow **choose the right one** \odot
			- \cdot e.g. Poisson \leftrightarrow Compound Poisson

Statistics plays important role in:

- **Measurement errors**
- **Random processes (quantum physics, statistical physics)**
- **Fitting of model parameters**
- **Deciding on model hypothesis/data selection**
	- **Judging significance of some "New Physics" signal**
- **Monte Carlo simulation/integration**

- **Measurements/Results typically follow some probability distribution**
	- **i.e. data is not at a fixed value, but "spreads out" in a particular way**
- **Which type of distribution it follows depends on the particular case**
	- **important to know the different distributions**
		- **-** be able to pick the correct one when doing the analysis
	- **.. and know their characteristics**
		- be able to extract the "information" in the data

Note: in statistical context:

instead of "data" that follows a distribution, one often (typically) speaks of a "random variable"

Probability Distribution/Density of a Random Variable

random variable *x or k* **: characteristic quantity of point in sample space**

discrete variables

continuous variables

 $P(k_i) = p_i$

$P(x \in [x, x + dx]) = p(x)dx$

normalisation (your parameter/event space covers all possibilities)

Bernoulli Distribution

- **2 possible outcomes:**
	- **Yes/No**
	- **Head/Tail**
	- **….**

$$
P(k; p) = \begin{cases} p & k = head = 1 \\ 1 - p & k = tail \end{cases} = p^{k} (1 - p)^{1 - k}
$$

Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Binomial Distribution

throw N coins: (anything with two different possible outcomes)

- \rightarrow ? how likely (often): $k \times head$ and $(N k) \times tail$?
	- \rightarrow each coin: $P(head) = p$, $P(tail) = 1 p$

 \rightarrow pick *k* particular coins \rightarrow the probability of all having *head* is:

 $P(k \times head) = P(head) * P(head) ... * P(head) = P(head)^{k}$

• at the same time: probability that all remaining N-1 coins land on *tail*

$$
P(head)^k P(tail)^{N-k} = p^k (1-p)^{N-k}
$$

- **★ That was for** *k* **particular coins:**
- \boldsymbol{N} \boldsymbol{k} **possible permutations for any** *k* **coins**

$$
P(\mathbf{k}; N, p) = \mathbf{p}^{\mathbf{k}} (1 - \mathbf{p})^{N - \mathbf{k}} {N \choose k}
$$

Binomial Distribution

Examples:

Expectation value: sum over all possible outcomes and "average"

 $\mathbb{E}[k] = \sum k P(k) = Np$

Variance:

 $= V(k) = Np(1-p)$

Some Characteristic Quantities of Distributions discrete variables continuous variables

Expectation value *E* **(mean value):**

$$
\mathbf{E} = \langle \mathbf{k} \rangle = \sum_{\mathbf{all } \mathbf{k}} \mathbf{k} \mathbf{P}(\mathbf{k})
$$

$$
E[x] = \langle x \rangle = \int xP(x)dx
$$

Note: mean/expectation of $f(x)$ **:** $\rightarrow E[f(x)] = \int f(x)P(x)dx$

■ <u>Variance</u> (*V* = σ^2 , with σ : "spread") **:** $E[(x - \langle x \rangle)^2] = E[x^2] - (E[x])^2$

$$
V(k) = \sum_{\text{all } k} (k - \langle k \rangle)^2 P(k) \qquad \qquad V(x) = \int (x - \langle x \rangle)^2 P(x) dx
$$

■ higher moments: **Skew:** $E[(x - \langle x \rangle)^3]$

■ Note: expectation and variance → properties of the full population. **Unbiased estimates, derived from samples taken from the distribution:**

$$
\widehat{V} = \frac{1}{n-1} \sum_{i}^{samples} (k_i - \overline{k})^2 \qquad \qquad \widehat{V} = \frac{1}{n-1} \sum_{i}^{samples} (x_i - \overline{x})^2
$$

Poisson Distribution

- **Binomial distribution: Individual events with 2 possible outcomes**
- **How about: # counts in radioactive decays during** Δt **?**
	- **events happen "randomly" but there is no 2nd**
	- : **continuum ≠ "N- discrete trials"**
- μ : average #counts in Δt . What's the probability for n counts?
- **Limit of Binomial distribution for** $N \to \infty$ with $Np = \mu$ fixed

For large μ **the Poisson distribution already looked fairly "Gaussian"**

- **in fact in the limit it "becomes" Gaussian**
	- **just like almost everything: Central Limit Theorem**
- **Gaussian is the probably the most important distribution**

Central Limit Theorem

The mean *y* **of** *n* **samples** *x***ⁱ from any distribution D with well defined expectation value and variance** lim → Gaussian $n\rightarrow\infty$

Central Limit Theorem

• Yes, even if D doesn't look "Gaussian" at all ! e.g. "exponential distribution"

Measurement errors:

- **Typically: many contributions**
- **Gaussian !**

Some Other Distributions

- **Exponential – distribution**
	- **time distr. until particle decays (in it's own rest frame)**
- **Breit−Wigner (Cauchy) – distribution**
	- **mass peaks (resonance curve)**
- $\mathbf{r} \chi^2$ distribution
	- **sum of squares of Gaussian distributed variables**
	- goodness-of-fit
- **Landau – distribution**
	- charge deposition in a silicon detector
- **Uniform – distribution**
- **… and many more:**

2D Gaussian

If the 2 variables are independent: $P(x, y) = P(x)P(y)$

Helge Voss **Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012**

Conditioning and Marginalisation $P(A|B) =$ $P(A \cap B)$ $P(B)$ = $p(x,y)dxdy$ $p_{x}\left(x\right) dx$ **conditional probability:**

↔ consider some variable in the joint PDF(*x,y***) as constant (given):**

marginalisation: If you are not interested in the dependence on "*x***" project onto "***y***" (integrate "x out")**

Cumulative distribution: (probability density function) χ

$$
\int_{-\infty} p(x') dx' \equiv P(x)
$$

 $\rightarrow p(x) = dP(x)/dx$

 $\mathbf{p}(x)$: probability distribution for some "measurement" x under the **assumption of some model (parameter)**

Example of Cumulative distribution usage:

· imagine you measure x_{obs}

how often expect I s.th. as far "off" the expectation (mean) value

■ $1-\int_{-\infty}^{x_{obs}} p(x')dx' \equiv p-value$ for observing something at least as **far away from what you expect**

 (one tailed as in example if "new physics" would be at higher x)

similar: χ^2 -Probability

Helge Voss **Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012** 21

Functions of Random Variables

A function of a random variable is itself a random variable.

- $\rightarrow x$ with PDF $p(x)$
- \blacktriangleright function $f(x)$
	- e.g. extraction of a physics parameter from a measurement
- **PDF** $g(f)$?

$$
g(f)df = \int_{dS} p(x)dx
$$

 $here: dS =$ **region of** x **space for which**

- **i** f is in $[f, f + \Delta f]$
- **For one-variable case with unique inverse this is simply:**

$$
g(f)df = p(x)dx \rightarrow g(f) = p(x(f))\left|\frac{dx}{df}\right|
$$

Note: this is NOT the standard error propagation but the FULL PDF !

Error Propagation

Either generate the FULL PDF of $f(x)$ **based on the PDF for** $x, p(x)$ **often the full PDF for x is not known, but only a mean value** μ **and** variance σ^2 (covariance matrix) have been estimated \bar{x} and \widehat{V} \rightarrow then expand $f(x)$ around μ

$$
f(x) \simeq f(\mu) + \frac{df}{dx}|_{x=\mu}(x-\mu)
$$

\n
$$
\Rightarrow E[f(x)] \simeq f(\mu) \quad \text{(as: } E[x-\mu] = 0)
$$

now let:
$$
f(\mu) = f(\overline{x})
$$
 and write as \overline{y}
\n $\Rightarrow y - \overline{y} \approx (x - \overline{x}) \frac{df}{dx} \vert_{\overline{x}}$
\n $\Rightarrow E[(y - \overline{y})^2] = (\frac{df}{dx} \vert_{\overline{x}})^2 E[(x - \overline{x})^2]$
\n $\Rightarrow \sigma_y^2 = (\frac{df}{dx} \vert_{\overline{x}})^2 \sigma_x^2$

 $\overrightarrow{ }$ the "usual" formula $\sigma_y = \frac{df}{dx}$ $\frac{dy}{dx}$ $\frac{1}{x}\sigma_x$

$= f(x)$

Beware: Error propagation assumes linearity (1st term in Taylor expansion)

several variables covariance matrix and partial derivatives

What is Probability

Axioms of probability: Kolmogorov (1933)

- \blacksquare $P(A) \geq 0$
- $\int_{U} P(A) dU = 1$
- **if:** $(A \text{ and } B) \equiv (A \cap B) = 0$

 (i.e disjoint/independent/exclusive)

 \rightarrow $P(A \text{ or } B) \equiv (A \cup B) = P(A) + P(B)$

A define e.g.: conditional probability

$$
P(A|B) \equiv P(A \text{ given } B \text{ is true}) = \frac{P(A \cap B)}{P(B)}
$$

What is Probability

- Axioms of probability: \rightarrow pure "set-theory"
- **1) a measure of how likely an event will occur, expressed as a the ratio of favourable—to—all possible cases in repeatable trials**
	- **Filter Frequentist (classical) probability**

 $P("Event") = lim$ $n\rightarrow\infty$ (#outcome is "Event" $\frac{\text{m} \cdot \text{m} \cdot \text{m}}{\text{m} - \text{r} \cdot \text{r} \cdot \text{m} \cdot \text{m}}$

2) the "degree of believe" that an event is going to happen

- **Bayesian probability:**
	- P("Event"): degree of believe that "Event" is going to happen \rightarrow no need for "repeatable trails"
	- **-** degree of believe (in view of the data AND previous knowledge(believe) about the parameter) that a parameter has a certain "true" value

Frequentist vs. Bayesian

Bayes' Theorem

$$
P(A|B) = \frac{P(B|A)P(A)}{P(B)} = P(B|A) \frac{P(A)}{P(B)}
$$

This follows simply from the "conditional probabilities":

$$
\begin{array}{c|c|c|c|c|c|c} \hline\n\text{CERN} & \text{Derivation of Bayes' Theorem} \\
\hline\n\text{m} & \text{m} & \text{m} & \text{m} & \text{m} \\
\hline\n\text{m} & \text{m} & \text{m} & \text{m} & \text{m} \\
\hline\n\text{m} & \text{m} & \text{m} & \text{m} & \text{m} \\
\hline\n\text{m} & \text{m} & \text{m} & \text{m} & \text{m} \\
\hline\n\text{m} & \text{m} & \text{m} & \text{m} &
$$

Bob Cousins, CMS, 2008

Frequentist vs. Bayesian

Bayes' Theorem

$$
P(A|B) = \frac{P(B|A)P(A)}{P(B)} = P(B|A) \frac{P(A)}{P(B)}
$$

This follows simply from the "conditional probabilities":

$$
P(A|B)P(B) = P(A \cap B) = P(B \cap A) = P(B|A)P(A)
$$

 $P(A|B)P(B) = P(B|A)P(A)$

$$
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
$$

Frequentist vs. Bayesian

Bayes' Theorem

$$
P(\mu|n) = \frac{P(n|\mu)P(\mu)}{P(n)}
$$

 $\textbf{P}(n|\mu)$: Likelihood function **:P**(μ |*n*): posterior probability of μ $\mathbf{P}(\mu)$: the "prior"

- $\textbf{P}(n)$: just some normalisation
- **B.t.w.: Nobody doubts Bayes' Theorem: discussion starts ONLY if it is used to turn**

frequentist statements:

probability of the observed data given a certain model: $P(Data | Model)$

into Bayesian probability statements:

probability of a the model begin correct (given data): $P(Model|Data)$

… there can be heated debates about 'pro' and 'cons' of either….

Higgs search at LEP: the statement

 the probability that the data is in agreement with the Standard Model background is less than 1% (i.e. P(data| SMbkg) < 1%) went out to the press and got turned round to:

P(data|SMbkg) = P(SMbkg|data) < 1% P(Higgs|data) > 99% !

WRONG!

Theory = female (hypothesis) .. male (alternative) Data = pregnant or not pregnant P (pregnant | female) ~ 2-3% but P (female | pregnant) = ?? © **easy Example:**

o.k… but what DOES it say?

we know: P (Data|Theory) ≠ P (Theory|Data)

rather: Bayes Theorem: P (Data|Theory) = P (Theory|Data) $\frac{P(\text{Theory})}{P(\text{яit})}$ P(Data)

Frequentists answer ONLY: P (Data|Theory)

… although.. let's be honest, we are all interested in P(Theory…)

We only learn about the "probability" to observe certain data under a given theory. Without knowledge of how likely the theory (or a possible "alternative" theory) is .. that doesn't say anything about how unlikely this makes our current theory !

Later: we'll define "confidence levels" … i.e. if P(data) < 5%, discard theory.

- **can accept/discard theory and state how often/likely we will be wrong in doing so. But again: It does not say how "likely" the theory itself (or the alternative) is true**
- \rightarrow note the subtle difference !!

BBC: 2 July 2012: US sees stronger hints of Higgs

By Paul Rincon Science editor, BBC News website

- **The signal is seen at the 2.9-sigma level of certainty, which means there is roughly a one in 1,000 chance that the result is attributable to some statistical quirk in the data**
- **The number of standard deviations, or sigmas, is a measure of how unlikely it is that an experimental result is simply down to chance rather than a real effect**

- **Certainly: both have their "right-to-exist"**
	- **Some "probably" reasonable and interesting questions cannot even be ASKED in a frequentist framework :**
		- **"How much do I trust the simulation"**
		- **"How likely is it that it will raining tomorrow?"**
		- **"How likely is it that climate change is going to…**
	- **after all.. the "Bayesian" answer sounds much more like what you really want to know: i.e.**

"How likely is the "parameter value" to be correct/true ?"

BUT:

- **NO Bayesian interpretation w/o "prior probability" of the parameter**
	- **where do we get that from?**
	- **all the actual measurement can provide is "frequentist"!**

- **"** "flat" prior $\pi(\theta)$ to state "no previous" knowledge (assumptions) **about the theory?**
	- **often done, BUT WRONG:**
		- e.g. flat prior in $M_{Higgs} \rightarrow$ not flat in M_{Higgs}^2
	- **Choose a prior that is invariant under parameter transformations**
		- **→ Jeffrey's Prior → "objective Bayesian":**
			- **-** "flat" prior in Fisher's information space

•
$$
\pi(\theta) \propto \sqrt{I(\theta)}
$$
 $(\pi(\vec{\theta}) \propto \sqrt{\det I(\vec{\theta})}$ if several parameters)

$$
I(\theta) = -E_x \left[\frac{\partial^2}{\partial \theta^2} log(f(x \; ; \theta))\right].
$$

$$
\tau(\vec{\theta}) \propto \sqrt{\det I(\vec{\theta})}
$$
 if several parameters)

 \blacktriangleright $f(x; \theta)$: Likelihood function of θ , probability to observe x for a give parameter θ **•** amount of "information" that data x is 'expected' to contain about the parameter θ

personal remark: nice idea, but "WHY" would you want to dot that?

- **still use a "arbitrary" prior, only make sure everyone does the same way**
- **loose all "advantages" of using a "reasonable" prior if you choose already to use a Bayesian interpretation!**

"Bayesians address the question everyone is interested in, by using assumptions no-one believes"

"Frequentists use impeccable logic to deal with an issue of no interest to anyone"

Louis Lyons, Academic Lecture at Fermilab, August 17, 2004

- **Traditionally: most scientists are/were "frequentists"**
	- **no NEED to make "decisions" (well.. unless you want to announce the discovery of the Higgs particle..)**
	- **it's ENOUGH to present data, and how likely they are under certain scenarios**
		- **keep doing so and combine measurements**
- **Bayesians are growing**
	- **well, at least now we have the means to do lots of prior comparisons: Computing power/ Markov Chain Monte Carlos**

- **Statistics is everywhere in science**
	- **need to be able to use it correctly**
	- **need to know about the available (possible) distributions**
- **What is probability?**
	- **the basics of "statistics"**
	- **axioms**
		- **Filters** interpretation
		- **Bayesian interpretation**

 Tomorrow: How to use these things to answer your scientific questions