@

Introcuciion to Statlstics

CERN Summer Student Lecture Program 2012
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ooand Waienine Lazrning
(in the last lecture)



= Why Statistics

» measurements etc...

» review of (some) probability distributions and some of their properties

= What is Probability :
» axioms

» frequentist / Bayesian interpretation

= Lecture 2-4
» Hypothesis testing
» Maximum Likelihood fit
» Confidence belts
» Monte Carlo Methods (Random numbers/Integration/Re-sampling)

» Machine Learning / Pattern Recognition
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nEP ExXoerirments ==

Fermilab SSC
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rneP EXoerirments =9

And while a the needle in the hay-stack would be already in one piece
-> particles: reconstructed from its decay products

- decay products: reconstructed from detector signatures

- etc..

Key:

<afj]]

“statistical/random”
processes

Muon

Electron

Charged Hadron (e.g. Pion)
Neutral Hadron (e.g. Neutron)




= What do we REALLY mean by:

*=m,, = 80.399+/- 0.023 ;
" Mpiggs™ 114.4GeV/c? @95%CL

(and... how do others “interpret” this?)

= these things are results of:
= involved measurements

= many “assumptions”/“Interpretations”

= correct statistical interpretation:
-~ most ‘honest’ presentation of the result

the results

— unless: provide all details/assumptions that went into obtaining

- needed to correctly combine with others (unless we do a fully

combined analysis)
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Interoreting your Vieasurerner
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= Be able to understand the latest
Higgs search plots!

Interoreiing Ve

ATLAS Prellmlnary | 2011 + 2012 Data

Vs=7TeV: [Ldt=4.6-4.8 b
Vs =8 TeV: _[Ldt 5.8-5.9 fb!

..................................................................

v e b b b b b Bl v v b by
110 115 120 125 130 135 140 145 150
m,, [GeV]

el

= rather than being fooled by “statistics”
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s

= Physics laws have exact numbers: F=m-a
» derived from “non-exact” measurements
»“non exact” <« statistically distributed
»know how to handle samples drawn from distributions

= extract parameters of underlying (parent) distribution
(l.e. mean value etc..)

= know what they describe - choose the right one ©
= e.g. Poisson «<— Compound Poisson

Wny Botner witrn Sia

Statistics plays important role in:
= Measurement errors
= Random processes (quantum physics, statistical physics)
= Fitting of model parameters
= Deciding on model hypothesis/data selection
= Judging significance of some “New Physics” signal
= Monte Carlo simulation/integration
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= Measurements/Results typically follow some probability
distribution

» i.e. data is not at a fixed value, but “spreads out” in a particular way

= Which type of distribution it follows depends on the particular case
» important to know the different distributions
= be able to pick the correct one when doing the analysis
» .. and know their characteristics
= be able to extract the “information” in the data

Note: in statistical context:
Instead of “data” that follows a distribution,
one often (typically) speaks of a “random variable”



Prooz2oility Disirioution/Density
of 2 Rancdorn Varizole

random variable x or K: characteristic quantity of point in sample space

discrete variables continuous variables
P(k;) = p; P(x € [x,x + dx]) = p(x)dx
normalisation (your parameter/event space covers all possibilities)
(0.0)

Z Plk) =1 f p(x)dx =1

P — 00

| Poisson distribution | |__Gaussian distribution |
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0.14— elE
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Sarnoulll Dj

= 2 possible outcomes:
» Yes/No
» Head/Tail
»....

= (fair) coin: P(head) = p (e.g. = 1), P(tail) =1 — P(head) =1—1p

2

N_ (P :k=head=1 _
P(k'p)_{l—p:k:tail =0

1

1

= [ p=05 | p=0.8
0.6 D.B-—
0.4 0.4-—
0.2 0.2

-%.5 0 0.5 1 1.5 -%.5 0 0.5 1 1.5
k k

p* (1—p)t*

1

P(k:p)
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35
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Sinornial Distrioutior) = =

throw N coins: (anything with two different possible outcomes) @

>? how likely (often): k x head and (N — k) x tail ? l 3/
/

&

§

» each coin: P(head) =p, P(tail)=1-p
» pick k particular coins = the probability of all having head is:

P(k x head) = P(head) = P(head) ...+ P(head) = P(head)*
» at the same time: probability that all remaining N-1 coins land on tail

P(head)* P(tail)VN=F = pk (1 —p)V—k

[ Binomial distribution

» That was for k particular coins:

= 02f
Z o N=15
(1,\(’) possible permutations for any k coins < EZE p=0.5
k(N o
P(k; N) p) — pk (1 o p)N k (k) o.ozg— . e
k
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Examples:

[ Binomial distribution |

T oaF

= o8t N=15 N=5 N=5
& oot p=0.5 p=0.5 p=0.2
o o4af
012
0.4
0.08F
0.06F
0.04
0.02
05 5 10 15 20 10 15 20 10 15 20
k k k

= Expectation value: sum over all possible outcomes and “average”
"E[k] = X kP(k) = Np
= Variance:

"V(k) = Np(1-p)
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of Distrioutions

discrete variables continuous variables
= Expectation value E (mean value):
= (k) = 2 kP (k) E[x] = (x) = [ xP(x)dx
all k
= Note: mean/expectation of f(x): E[f(x)] = | f(x)P(x)dx

= Variance (V = o2, with o: “spread”): E[(x — (x))?| = E[x?| — (E[x])?

Vi) = ) (k- (k)?P(K) V() = [ (x — (0)2P(x)dx
all k

= higher moments: Skew: E[(x — (x))3] ...

= Note: expectation and variance - properties of the full population.
Unbiased estimates, derived from samples taken from the distribution:

1 samples _2 . 1 samples
= ki— k V=" — %)?
n— lzi ( : ) n—1 i (xl X)




Poissor Disiriouiion

= Binomial distribution: Individual events with 2 possible outcomes

= How about: # counts in radioactive decays during At ?
- events happen “randomly” but there is no 2"
- At: continuum # “N- discrete trials”

= u:average #counts in At. What’s the probability for n counts?

= Limit of Binomial distribution for N - co with Np = u fixed

n

- | Poisson P(n) = %e‘”

Poisson distribution

o
=3
TT 2
7]
-
o
-

= E:
u=1.0 " u=2.0 Ty M1 u=10.0
z’ z" o
& & o.osf—
0 5 ) X Nobserv:: ) ) Nobserv:: D 5 ) ) Nobserv::
= Expectation value: = Variance:
E[n] = 2 nP(n) = u Vin) =p

Helge Voss b.t.w. it’s a good approximation of Binomials for N >> Np = u
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= For large u the Poisson distribution already looked fairly “Gaussian”
= in fact in the limit it “becomes” Gaussian
= just like almost everything: Central Limit Theorem
-> Gaussian is the probably the most important distribution

_(x—p)? -6-0.5 i 1 1 T
Gauss: P(x) = ~e 20° = [ )
2To Xo04F
. S |
= Expectation value: o 03k
Elx] =nu T f
= Variance: 02F
V(x) = o :
01
= Probability content: N
o 20 -4
f P(x)dx = 68% f P(x)dx = 95%
-0 —-20
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Cerniral Lirnit Trnieorarn e

= The mean y of n samples x; from any distribution D with well defined
expectation value and variance lim — Gaussian

n— 0o
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summation o5
D: Eplx] = w;Vplx] = 0-12) > Egauss Y] = W Viauss|y] = n
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Ceniral Lirnit Tneorern =y
= Yes, even if D doesn‘t look ,,Gaussian“ at all !

e.d. ,,exponential distribution®

Measurement errors:

- Typically: many
contributions

- Gaussian !
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Sorne Otner Distrl

= Exponential — distribution

» time distr. until particle decays (in it’'s own rest frame)

= Breit-Wigner (Cauchy) — distribution o

» mass peaks (resonance curve)

= x* — distribution g =
» sum of squares of Gaussian distributed variables

= goodness-of-fit

= _Landau - distribution

» charge deposition in a silicon detector @

= Uniform —= distribution

1/(b-a)t

= ... and many more:
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= |f th 2 variables are independent:
P(x,y) = P(x)P(y)

= Correlated Gaussians &
transformed (rotated) variables

x0T
P(X, y) — e 202 e 29 \}i 4 —0: Z2n 5
/Zna,zc Znaf, | L g
N~ L
\T) 4r 71N g: = ; g ]
: / \ e *] o4t .
0 I 1 : | . .5_| 1
2f \ . %O — (x1)
3 = 1 G-V G-
et bt 2, /det(V) WI
i]qr X—(x) V—( (x7) — (x1)? (x1%2) — (xl)(x2)> Lo
+20, B variance
® (x1x2) — (x1 X{(x2) (xz) (xz)z .
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Conditioning znd Varginalisation =
P(ANB) 5 p(x,y)dxdy

= conditional probability: P(A|B) =

P(B)  px(®dx
< consider some variable in the joint PDF(x,y) as constant (given):

hivlx)
(=]

b

= marginalisation: If you are not interested in the dependence on “x”
- project onto “y” (integrate “x out”)
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curnulzaitive Distrioutiorn

— —t
G PDF | /-C\umulativeGaussiandistribution |
o // (probability density function) Dif’ ]
Cumulative distribution:

f x p(x")dx' = P(x)

0.02

nl 1 1
~10 -5 0 5 15 20

Xope X - p(x) = dP(x)/dx S »
= p(x): probability distribution for some “measurement” x under the
assumption of some model (parameter)

Example of Cumulative distribution usage:
" i[magine you measure x,ps

= how often expect | s.th. as far “off”’ the expectation (mean) value

E 1-ff§obsp(x’)dx’ = p — value for observing something at least as

far away from what you expect

(one tailed as in example if “new physics” would be at higher x)

= similar: y?-Probability
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/

Funciions of Rancdorn Variaoles ==

= A function of arandom variable is
itself a random variable. 0

» x wWith PDF p(x) é
» function f(x)
= e.g. extraction of a physics

parameter from a measurement 4

= PDF g(f)? | T 1
4 df
g(fdf = | px)dx
ds [ == dx |

here: dS =region of x space for which
= fisin [f, f + Af] 0 2 14 5 8 10
= For one-variable case with unique X

Inverse this is simply:

—  g(NHdf =px)dx - g(f) =p(x(f))

dx
af
Note: this is NOT the standard error propagation but the FULL PDF !
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Efror Progzgzaiior) ==

= Either generate the FULL PDF of f(x) based on the PDF for x, p(x)
= often the full PDF for x is not known, but only a mean value u and
variance ¢ (covariance matrix) have been estimated x and V
- then expand f(x) around u

FG) = f) + L — ) '

/y:j'(x)
2 E[f(x)] = f(u) (as: Elx—p]=0)

Beware: Error propagation
assumes linearity (15t term

now let: f(u) = f(x) and writeas y in Taylor expansion)

df
ME:

9 y y ~ (x x) . RSN ./
B ; - ytoy §------- g ( g)
> E[(y -9)?] = (d— ) E[(x—%)?] HERE
p TE
> 05 = (%ly_c) o .Tc:'o_r g

df
> the “usual” formula 0, = — |0

= several variables = covariance matrix and partial derivatives
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Wzt is Proozoility

= Axioms of probability: Kolmogorov (1933)
=P(A) =0
. fUP(A)dU =1
“if: (AandB) = (ANnB)=0
(i.e disjoint/independent/exclusive)
- P(AorB)= (AUuB) =P(A) + P(B)

- define e.g.: conditional probability

P(A|B) = P(A given B is true) = P(ANB)

P(B)

U niverse U niverse

Venn-Diagram Venn-Diagram
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= Axioms of probability: - pure “set-theory”

1) a measure of how likely an event will occur, expressed
as a the ratio of favourable—to—all possible cases in
repeatable trials

= Frequentist (classical) probability

P(”Event”) = lim ( #outcome is "Event" )

Nn— oo n—"trials"

2) the “degree of believe” that an event is going to happen

= Bayesian probability:
= P("Event”): degree of believe that “Event” is going
to happen - no need for “repeatable trails”

= degree of believe (in view of the data AND previous
knowledge(believe) about the parameter) that a

parameter has a certain “true” value




Bayes’ Theorem P(A|B) = P(B|A)P(4) =P(B|A)

P(4)
P(B) P(B)

= This follows simply from the “conditional probabilities”:
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Darlvztlorn of 2zYa35° Trizora)

... in picture ...taken from Bob Cousins

P(A) =

L P(B) =
|

Whole space

Bob Cousins, CM3, 2008
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Bayes’ Theorem P(A|B) = P(B|A)P(4) = P(B|A) ——=

P(A)

P(B) P(B)

= This follows simply from the “conditional probabilities”:

P(A|B)P(B) = P(ANB) = P(BNn A) = P(B|A)P(A)
P(A|B)P(B) = P(B|A)P(4)

P(B|A)P(A)

P(A|B) = PB)
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=P(n|u): Likelihood function
P(n|pw)P(un) =P(u|n):posterior probability of

Bayes’ Theorem P(uln) = P(n) =P(u): the “prior”

=P(n): just some normalisation

B.t.w.: Nobody doubts Bayes’ Theorem:
discussion starts ONLY if it Is used to turn

frequentist statements:

= probability of the observed data given a certain model: P(Data|Model)

Into Bayesian probability statements:

= probability of a the model begin correct (given data): P(Model |Data)

= ... there can be heated debates about ‘pro’ and ‘cons’ of either....



[Tneory) = P (Trigory|Darizy) =

= Higgs search at LEP: the statement
= the probability that the data is in agreement with the Standard

Model background is less than 1% (i.e. P(data| SMbkg) < 1%)
went out to the press and got turned round to:

P(data|]SMbk SMbkg|data) < 1% - P(Higgs|data) > 99% !
WRONG!

= easy Example: Theory = female (hypothesis) .. male (alternative)

Data = pregnant or not pregnant

P (pregnant | female) ~2-3%  but P (female | pregnant) =?? ©

—0.K... but what DOES it say?
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@V flie corract irac|lens:
-A

Inieroretaiion
we know: P (Data|Theory) # P (Theory|Data)

P(Theory)
P(Data)

rather: Bayes Theorem: P (Data|Theory) =P (Theory|Data)

Frequentists answer ONLY: P (Data|Theory)

We only learn about the “probability” to observe certain data under a
given theory. Without knowledge of how likely the theory (or a

possible “alternative” theory ) is .. that doesn’t say anything about
how unlikely this makes our current theory !

Later: we’ll define “confidence levels” ... i.e. if P(data) < 5%, discard
theory.

— can accept/discard theory and state how often/likely we will be
wrong in doing so. But again: It does not say how “likely” the
theory itself (or the alternative) is true

- note the subtle difference !!



BBC: 2 July 2012: US sees stronger hints of Higgs

By Paul Rincon Science editor, BBC News website

= The signal is seen at the 2.9-sigma level of certainty, which means
there is roughly aonein 1,000 chance that the result is attributable to
some statistical quirk in the data

= The number of standard deviations, or sigmas, is a measure of how
unlikely it is that an experimental result is simply down to chance
rather than a real effect
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= Certainly: both have their “right-to-exist”

= Some “probably” reasonable and interesting questions cannot even
be ASKED in a frequentist framework :

= “How much do | trust the simulation”
= “How likely is it that it will raining tomorrow?”
= “How likely is it that climate change is going to...

= after all.. the “Bayesian” answer sounds much more like what you
really want to know: i.e.
“How likely is the “parameter value” to be correct/true ?”

= BUT:
= NO Bayesian interpretation w/o “prior probability” of the parameter

= where do we get that from?
= all the actual measurement can provide is “frequentist”!



/
)
{

Bavesiarn Prior Prooaoillilies

= “flat” prior (0) to state “no previous” knowledge (assumptions)
about the theory?

» often done, BUT WRONG:
- e.g. flat prior in My;4,5 = not flatin Mg, ;s
» Choose a prior that is invariant under parameter transformations
- Jeffrey’s Prior - “objective Bayesian”:
= “flat” prior in Fisher’s information space

= () x /1(0) (m(6) « |det1(6) if several parameters)

[(6) = ~Exlzgzlog(f(x ;6]

=f(x; 8): Likelihood function of 8, probability to observe x for a give parameter 6
=amount of “information” that data x is ‘expected’ to contain about the
parameter 6

= personal remark: nice idea, but “WHY” would you want to dot that?

= still use a “arbitrary” prior, only make sure everyone does the same way

= loose all “advantages” of using a “reasonable” prior if you choose already to
use a Bayesian interpretation!
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“Bayesians address the question everyone is
Interested in, by using assumptions no-one believes”

“Frequentists use impeccable logic to deal with an
issue of no interest to anyone”

Louis Lyons, Academic Lecture at Fermilab, August 17, 2004

= Traditionally: most scientists are/were “frequentists”

= no NEED to make “decisions” (well.. unless you want to
announce the discovery of the Higgs particle..)

= it’'s ENOUGH to present data, and how likely they are under
certain scenarios

= keep doing so and combine measurements
= Bayesians are growing

= well, at least now we have the means to do lots of prior
comparisons: Computing power/ Markov Chain Monte Carlos
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SUrNINery ==

= Statistics is everywhere in science
» need to be able to use it correctly
» need to know about the available (possible) distributions
= What is probability?
» the basics of “statistics”
» axioms
= frequentist interpretation
= Bayesian interpretation

= Tomorrow: How to use these things to answer your scientific
guestions
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