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Introcuciion to Statlstics

CERN Summer Student Lecture Program 2012

Helge Voss

ooand Waienine Lazrning
(in the last lecture)



= Why Statistics
= What is Probability :

» frequentist / Bayesian interpretation

» Hypothesis testing
= error types and Neyman-Pearson Lemma, confidence level a« and p-value

= new particle searches — example: Higgs

= Lecture 3
» Parameter estimation
= Maximum Likelihood fit
= y2-fit
» Neyman Confidence belts
» (Monte Carlo Methods (Random numbers/Integration) = see slides)
= Lecture 4

» Machine Learning / Pattern Recognition
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exarmole LEP rliggs Sesarecn ==

= “avoid” Being Lucky when setting the limit and observing an event
count less than the expected background (we’ll come back to that, later...)
- rather than “quoting” in addition the expected sensitivity
- weight your CL,, by it:
CL. = Ps+b _ CLs+b _ P(LLR = LLRobslHl)
S 1-— Pbp 1-— CLb P(LLR < LLRObSlHO)
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= Aim for DISCOVERY = disprove Hy = background ONLY

= somewhat different test statistic: “profile Likelihood ratio” of

Likelihood function L(u, 8),with u = GL 0: nuisance parameters
SM

= p-value for discovery: Bkg only hypothesis (u = 0)

= p-value calculated “locally” for | oo Fprpeg T AN

] ATLAS Prellmlnary 2011 +2012 Data
every Higgs mass — Obs. (§=7TeV: [Ldt=4.648 1"

Vs =8 TeV: ILdt 5.8-5.9 fb!

= Look at any “dip” in p-values
over whole mass range

= think as “binned” in Higgs
mass resolution

= Random samples of a _
distribution, histogram it = 1 out L] e

of 20 bins (5%) will deviate 2o 110115 120 125 130 135 140 145 1[30\/]
5 m e
from expectation.. e.t.c. -

* LOOK-ELSEWHERE-EFFECT =not taken into account = local p-value
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CL. and Exclucled Cross Seeiion =« =

. ()
Ps+b = adjust u = — such that
*CLg = " osM
ob CLy, = 95%
n T L L B L LA L L L BN~ I _ 0
K7 10k - CMS Prellmlnaryr —=— Observed 9 Ilmlt on ﬂ — 0'_
2 Fis=7TeV,L=511f" | B Expected (68%) | SM
© 1,;_\’:5=8T9V,|-=5-3f51 ------ Expected (95%) | - T
% - E % 10F  cms Preliminary —=— Observed .
< 10'E <959 O [ vs=7TevL=51f' | Expected (68%)]
@ F \ T B [ Vs=8TeV,L=53f" |- Expected (95%)[|
-@10—2 Iﬂ\ / x §99 Yo g
I = =
= 1073 -..*\.."‘5\‘{ §99.9m E
» ., - 1 1F
« 10° E o |
" Z o
d"ﬁ 0° E %
10° .
0_? I T N T ORI 10 |‘T‘| R T T |é 10—1 - :"'" -
110 115 120 125 130 135 140 145 - ]
Higgs boson maSS (Gev) : 1 1 1 1 I||I|||II|I|III|||||III|I||I|I|I||I_
100 200 300 400 500
Message: Higgs boson mass (GeV)

They can nicely exclude everything at “high Confidence levels”
apart from where they see the signal
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Sysimatic Unceriainiies AN

= standard popular way: (Cousin/Highland)
» integrate over all systematic errors and their “Probability distribution)

>marginalisation of the “joint probability density of measurement
parameters and systematic error)

Y,

| Bayesian ! (probability of the systematic parameter)

>“hybrid” : frequentist intervals and Bayesian systematic

>has been shown to have possible large “undercoverage” for very small
p-values /large significances (i.e. underestimate the chance of “false
discovery” !l

= _LEP-Higgs: generated MC to get the PDFs with “varying” param.
within systematic uncertainty

-> essentially the same as “integrating over” - need probability

density for “how these parameters vary”



Sysigrnaiic Unceriainties s
= We can do better: systematic uncertainly as “free parameter” in the fit

= eg. background = sidebands

04 . parametrise fsb(nsideband; 0) = fsb(nsb; 9)
= uncertainty: scale/shape ?

i
e
@

S 5
=
LA e s e B

(1/6,;,) do/ dM
=
T

s Hf % Ngig + Nprg = free parameter @ in parametrisation
2 ™ n 2 fsp(ngp) = fsp(ngy; 0)
02 [ 4 Sbops. . .
: = extrapolate to signal region
i Osa (0w s e - bkg expecation:
R T T M P VR M N U P b = b(ng,; 0) = fsig(ngy; 6)

Y

Note: no need to specify prior probability
= Likelihood function includes:

= parameters of interest
= parameters describing the influence of the sys. uncertainty
-> the latter are called: nuisance parameters

P(nsig' Nprg) Nsb,ps. |S' 0) = P(nsig + nbkg|s + b(nsb; 9))P(nsbobs. |fsb (nsb; 9))
| J U - 7

Y -~ Y

joint model measurement of interest sideband
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= |ikelihood function includes:

1 o
= parameters of interest u = —
SM

= parameters of the sys. uncertainty (nuisance parameters )

2L =L(n0):

* “most likely parameters u and 8 are found where the Likelihood is
maximised

= used in test statistic: L(,0) ... i.e. Likelihood “maxmized” w.r.t. 6

But: let’s now talk about
« “Maximum Likelihood” fitting
- Parameter fitting in general

Helge Voss Introduction to Statistics and Machine Learning — CERN Summer Student Program 2012 9



Pararneier Esiirnaiion

= “estimator” - estimate characteristic parameter of parent
distribution using a limited “sample” from the distribution. e.g.:

1N
NZi:lxi
: &1
- there are others: =2 (i + Xip )
P =

1 oN =\2
mzi=1(xi —X)

» mean value: “estimator”: [

» variance: “estimator’ :

» median: .....
» .... polarisation in your differential cross section

properties of estimators . Y best

= biased or unbiased large

= large or small variance variance
= distribution of 8 on many
measurements ?

biased

4
)

Btrue
= Small bias and small variance are typically “in conflict”

Helge Voss Introduction to Statistics and Machine Learning — CERN Summer Student Program 2012

10



= want to measure/estimate some parameter o
= e.g. mass, polarisation, etc..

observe: ¥ = (x4,...x,); i=1K
= e.g nobservables for K events
“hypothesis” i.e. PDF P(x; 0) - distribution x for given 0
= e.g. diff. cross section
> K independent events: P(x!,..xK; 0) = [[X P 0)
for fixed x regard P(x; 0) as function of @ (i.e. Likelihood! L(8))
= § close to 64, — Likelihood L(8) will be large

J©
@)

— log L-41.2 (ML fit)
log L—41.0 [true parameters)

Helge Voss

— log L-138
log L-188

- try to maximise L(0)
- typically:

- -2Log(L(9))

- minimise

>0

= Maximum

Likelihood estimator
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Vieudirnurn Likelinoocd Estirnator =«=

Lifetime T =? ;. decay times are exponentially distributed P(t) = %e"?

: toq _t
can observe decay times >ty only 2> P(t) = e~ e

data sample: {t;,t, .....ty} = L(t) = [V P(¢;)
: ~In(L() = XY In(P(ty))
: = -N(2-m@)+135)

o

12

10

entries/bin

-Log(Likelihood)
-A Log(Likelihood)

0
1 2 3 e e 0 06 07 08 09 1 1112 1.3 1.4 0.960.970.9809% 1 1.011.021.031.04

measured decay time tzoom and T

| . | _ subract offset.
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Vieudirnurn Likelinoocd Estirnaior ==

= Error on estimated parameter 8 (%) ?
= Taylor expansion:

~In(L(8)) ~ —In (L(B)) - [‘”"(“9)] (6 - e) - [“2;’;(;")]5 (0-8)" + ..

=0 (mlnlmum)

% d2in(L6) (g g)
510 ~1@)el @ b = 1@

-A Log(Likelihood)

d?In(L0)
dez lg

> —n(L(8)) ~ —In(L(8)) + - (6 - )"
- read off parabolic In(L) curve: —In (L(@ + 0'9)) = —In (L(é)) +%

> 4=
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Mexdirnurn Likelinoocd Estirnaior =« =

_ _ 1 (x—p)?
example: PDF(x) = Gauss(x,M,0) = L (ulx) = 5 €XP (— o2 )

- estimator for us. from the data measured in an experiment xq, ..... xy

> full Likelihood L(u|x) = (xi_”)z)

1
Viexp (_ 202

> typically: —2In(L(u|x)) = XV (M) + N —=Note: It's a function of !

210

> —2AIn(L(w)) =YV ((x‘ “)) - x?,least squares

202
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Mledirnurn Likelinoocd Estirnaior ==

= Maximum Likelihood is typically unbiased only in the limit K = o

= |f Likelihood function is “Gaussian” (often the case for large N
=> central limit theorem)

- get “error” estimate from or -2Alog(L) = 1
-~ if (very) none Gaussian

- revert typically to (classical) Neyman confidence intervals



= rather than having P(x1,.. ¥X; 8) = [[X P(®; 0) for each event |
— use binned events (i.e. a histogram)
> e.g. if P(®;0) is not analytically available

— in each bin i there are n; events, Poisson distributed around u;
— get prediction u; = u;(0) from “Monte Carlo” or analytical model

2In(L)(6) = 2 Y;*™(In(n;) — nydn(pw;) + w;)



UI
2
e
‘—lit
=N
—_
i

{

Gooclriess

= So far we know the “uncertainty” on the fitted value of 6, but...
= did the fitted model “really” describe the data?

= The value of the InL (log Likelihood) at the minimum does not
“mean anything” -> calibrate!

- determine the distribution of InL fit results with Monte Carlo toys!

- check your “data”-fit

T TT T o T T
0.08 T i
ﬁ i Badl | IGDDdI _|g C JJJr
o | Agreement |p Agreement v: 08 [ =
0.06 -— |' i = I
) 506 ] -
o
0.04 Jj . . o |
] 041 ’JI -
002 I I - i l
,)Ir v . 02| f .
: 1 r
ElrllllI-J.f-'-lrlllllll‘!]'llllllll- I _,-.“"illru-:-l I-.---
-50 -40 -30 -20 -10 O %0 40 -30 20 -10 0
InL InL,.
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= Easier with Gaussian distributed variables
- least square fit )(2 _ Z? ((ﬁ\i—ui(H))Z)

> y?

202

has known distribution: g[x2] = n; : #number of “degres of freedom”
l.e. n — #fitted parameters

Chi2 Probability: The 1- cumulative distr. of P(Xz,nf) —distribution
- how often to expect “worse” fit result (i.e. with larger y* value at min.)

— 1
— 0.6 . _ ~ E f—ﬁ
o~ . — — 5 0.9E _4/— _— F— _nf- 1 [
N NN =5 s —— 0 F
0.5 . o —ndf=2 |- ~. osE » s
\\ P X ) nf) - — ndf= 3 g 0_7E '/ / 2] nf =4 |
0.4F —ndf=4 |- S osf /[ / AT s |
\ ndf=5 s <t/ / A I D B
0-3- \ —ndi= ¢ I E 04§ // // nf
C o= “E
0.2 \-N QO o3 / // /,/
.- 0-2 I // /
0.1f 01EL »
o | 00 = 4 ---2----3----4----5----6----¥----8----9----10
10
2 X2
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Classiczal Conficdence Inisrvals ==

= Neymans Confidence belt for CL a (e.g. 90%)

[ LR AR R AR ] = each Mhypothetically true N@s @ PDF of
- . how the measured values will be
6 - = - distributed
o - 3 - . -
5.0 E = determine the (central) intervals
N /g\ . (“acceptance region”) in these PDFs
.§4 o ij - such that they contain a
&) - — . .
;—551 - =~ | . = do this for ALL My e
2 F - = connect all the “red dots” >
:"2 - E confidence belt
'F 7 =measure figy;
0 0'—-—-—-—{—'-:5_;' Sl bond S confinterval =[pg wy] given by
—.Vvertical line intersecting the belt.

Hobs U

= by construction: for each i, (taken according PDF(pyye ) the
confidence interval [4; M,] contains pyq,e IN a =90% cases
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= Neymans Confidence belt for CL a (e.g. 90%)

7 e - —>conf.interval =[u, Y,] given by

y n - vertical line intersecting the belt.
2 F = : = by construction:
5 - . 1-a
?E - )§\ . 'P(H<ﬂobs;ﬂz)=7
34 | = — _ —a
- = " P(u> fopsi k1) = ——
29 O . = if the true value were
= 7 Hirue

» B 7 > lies in [uq, p,] if it intersects |

b E > [, intersects in 90%

5 ] (that’s how it was constructed)
e R I e - only those x,,s give [y, Hz]’s
-~ that intersect with the =
Hobs U _
- 90% of intervals cover g ye
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Cornoine Conficdance Iniervals ==

= i : Gaussian PDF: Neyman CL = Maximum Likelihood (ML)
= In the limit of ML approximation (Gaussian PDF’s) - combine “as
usual”

= But: don’t be fooled to believe you are combining statements
about where the ‘true parameters’ are likely to be !

= Otherwise:
= Combine individual measurements (not the derived confidence

Intervals)
- construct “confidence belt” of combined measurement

SME coefficient determined in [8| and (C'L)p
C.L. upper limit determined here. We combj
limits as

. . 1/ OTA2
— obviously you cannot combine 1/(CL)" =
direCtIy “uppel' Iimits,, th |S Way: where (C'L) is the gorbined 99.7% C.L. upper limit. The
most sensitiveMpper limits we have determined with the
MINOSarfutrino and antineutrino data are given in Ta-
AV . As discussed, the way we determine the upper lim-




Flip-Flog = =

When to quote measuremt or a limit!
= estimate Gaussian distributed quantity g that cannot be <0 (e.g. mass)
= same Neyman confidence belt construction as before with 90%CL.:

= once for measurement (two sided, each tail contains 5% )

= once for limit (one sided tails contains 10%)

6_|||| TITT[ITTT T TTTT[TITTT[TIT

= quote upperlimit only
= if you observeu,,s>3

— clgmeasurement

— induces “undercovering” as
this acceptance region
contains only 85% !!

ﬂhyp.true
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ENHINYSHIE LI ERG OGN AR = =

same example:
= estimate Gaussian distributed quantity g that cannot be <0 (e.g. mass)

6 -I | B B | L | rrria | I | Frran | I | I- u USing proper Confidence belt
. 7 - assume:@ =-1.8 |
5 ﬂ =] - confidence interval is
- EMPTY!
1 -
£3 - = Note: that’s OK from the
3 frequentist interpretation
X 2 Herue € [cOnf.interv.]in 90%
of (hypothetical) measurements.
1
AN I ] Obviously we were ‘unlucky’ to
D T Y pick one out of the remaining
n 10%

= nonetheless: tempted to “flip-flop” ??? tsz ..tsz..tsz..
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Feldmezan Cousins: 2 Unifigd Apgorozicn =« =

" How we determine the “acceptance” region for each p . IS Up to us, as
long as it covers the desired integral of size a (e.g. 90%)

= - standard: conf. central (for measurement) or one sided (for limits)
- include those “u”, for which the likelihood ratio R is large, first:

" et Of pgiven the estimator U
2 Mpest = M ifin ALLOWED region

2 Hbest = Mming,,,.q Otherwise

L(ﬁ|ﬂhyp.true)
L(E|fpest)

PDF for given mu |
0.4

R =

0.3}
0.2

n.1f—
ry 2 e ] 2 i
zk Likglihood Ratio S~ ”\ i

! ! ! | ! ! ! ! ! ! | ! L
-4 -2 0 2 4
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Halre) Lueicy... ==

= upper limit on signal ug on top of known (mean) background u,
= measure n, (ng+n,) events -> Poisson distribute

= P(n) = Poisson(n, us + u)
= Neyman: draw confidence belt with
= “u;” on the “y-axis” (the possible true values of u,)

2 experiments (E1 and E2)

15 — © 5 12
14 |- @ 5 "N Mp1 =1, pp2, both
13 | @ I
12 |- = 210 observe (out of luck) O ev.
1 - . —
0 1 £ s E1l: 95% limit on u,~2
i ~J -
B e o e N - T E2: 95% limit on pg~1
..... S T N N D VAR o S = 3
o NN = EEE > UNFAIR! ?
..... - E o ]
5 bt i —> 8 S L \
4 - T 90% of hyp.meas n for hyp. ..g o 4 erved n T
I mean. pg +pp = 5+ 3, =
T N excluding the 10% of o g 2 -
rlm """ - \ " smallest hyp. observations £ <
b1 2345678 09101112131415 -
Measured n E.LOJ 0 : :
. > 110 12
for fixed Background p,=3 c S ORI . SR B
_ - n Background y,,
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) . -, ;l
Salrle) LUcKy ... = =

Bayesian: rather than constructing Confidence belts:

+ ) = |

Upper limit on signal

Helge Voss

us <0
uniform pu, > 0

= turn Likelihood for ug (for given n,,,) into Posterior probability for ug
i.e Poisson(nobs; HUs + I"b) > L(nobs; ﬂs)
" p(ugIngps) = L(ngys; Us) * m(ug)add prior probability on “s”:

Feldman/Cousins

* no empty intervals, but still
“unfairness” (better limits if 0
observed and larger b-expected)

» perfectly “fine” in frequentist

in =

s figure 1, here t

interpretation:
* should quote “limit+sensitivity”
= M, i
R NN i
_ 81[} S L0 eveats observed.
< SN i : ]
=
LY
By
25
— Iﬁ.
=
Lo - [} L 1 1
0 5 10 15 2(n
Background b Mean Expected Background b
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sifng Llcky - EXclUsion [mits™

wren 0 avents oosarveac)

= Cousin-Feldman-> Likelihood ordering (1998)

= Roe Woodroofe = Constraint Likelihood ordering (1999)

= Mandelkern Schultz = Maximum likelihood estimator (2000)

= Cousins = why one should stick to likelihood ordering (2001)

= You see... all still very recent ! There’s always debate going on,
and its all not simply “textbook”



SLUnEry =

= CLs ... the HEP limit;
» CLs ... ratio of “p-values” ... statisticians don’t like that
» new idea: Power Constrained limits
= rather than specifying “sensitivity” and “Neyman conf. interval”
= “accept” limits only within experimental “sensitivity !
->lots of “different” ideas floating around how to “set limits”
>Hey! We don’t need that anymore ...well at least not for the Higgs.. ©
= .. abit about Profile Likelihood, systematic error.
= Parameter estimation
» Maximum Likelihood fit
» x> -fit (least squares)
= what to do if estimator is non-Gaussian:
» Neyman — confidence intervals
» what “bothers” people with them
= Feldmans/Cousins confidence belts/intervals
» unifies “limit” or “measurement” confidence belts



Vionite Carlo Vlginocs = =

= Monte Carlo Integration
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Monig Carlo Intggraiion ==

Elf(2)] - | f(@p(2)dz

p(2) f(z) = simple n equidistant step-wise
summation?
- o0.k.in 1 or “very few” dimensions D
- n-steps grows exponentially with D

- random sampling converges
/ faster for large D
- often: the distribution p(z) is not even - go to Monte Carlo
fully known analytically: SO, M0 [
« often: the normalisation of the distr. |
p(z) is not known: e.g. calculation of
Bayesian expectation values
 NOTE: for E[f(z)] the normalisation of
p(z) is irrelevant !

- not solvable by analytic integration
= numeric integration

Helge Voss Introduction to Statistics and Machine Learning — CERN Summer Student Program 2012 30




SVIISS

Rejeciion Sarnoling
= generate random numbers with distribution p(z)
= generate uniform random numbers in “enclosing space”
= for each such random number, accept it with probability
‘ _ p(2) e.g. generate 2" random number uniform

‘ n ‘ "~ q(2) in [0; g(z)] and acceptifitis > p(z)

- accepted events follow p(z) distribution

«——— enclosing function : q(z)
defines proposal
distribution.

-> some function that you
can easily sample from

p(z) the function defining

the distribution we want to
sample from

= Note: fraction of accepted ev.x [ q(z)dz = [ p(z)dz
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sernolire = =

= one can get a bit more effective (less rejection)
- none “square”/uniform proposal function q(z)

— still sample “uniformly” in area under q(z) and do as before

kq(zo0) kq(2) there are also techniques
that automatically adapt
the proposal distribution
iteratively

uo

<0 <

fraction of accepted ev.x [ q(z)dz = [ p(z)dz

If only integration, not p(z) random event
generation: even more clever: 2
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Imoortarnce Sarmoling -

= Rather than ‘rejecting’ events with p= p(2)

q(2)

P() . «importance weights”

- weigh them by factor == o

= Note: in this way, the proposal
q(z) does not even have to
“enclose” p(z), as weight can

alsobe>1
= E[f(x)] also with unknown
normalisations of p(z) and q(z)
* p@=52 andq@) = 7

p2) Z, p(2) 11X B(z (’)) 2O

B @] = J f() 75—z = 3] [@) T a(a)dz = Z—ﬁz~(z(l)) f(z®)
iy Zp _ iz (7D
W1ch—q = Z—qu p(z)dz = [ %q(z)dz ~ %ZN%
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Viarkov Cnzin Wonie Carlo s

= previous techniques
— accuracy depends on how closely g(z) follows p(z)
- problem for “sparse” , “unknown” p(z)

= every “random point” chosen independent of previous one

= Markov chain: (e.g. random walk)
— consecutive random steps depend on previous location in
random variable space
- allows to favor stepping into regions where p(z) large




Metrooolis Algoritnrr) =

= Start somewhere in z —space at random
= sample this point
= provide “proposal distribution” q(z'|z) to jump from z - Z’
= e.g. Gaussian with some “metric” in z —space , symmetricinz & z’
= accept z' if:
=p(z') > p(2)

= or with probability % only if p(z') < p(z)
= sample either the new point (if accepted) or old point (again)

= iterate
= Sample points z will > wander closer and 3

closer to the “center”, still jumping enough 25l
from time to time to sample the “whole space”.

= 2 samples of will follow the distribution p(z)
(although consecutive samples are correlated)
= - normalisation of p(z) not necessary for '
= sampling algorithm 05}

= determination of E[f(2)] ’



Sernoling can

<2

a

= just like the Metropolis algorithm apart from: « L -
= propose to jump only in 1-coordinate at
the time
= cycle through the coordinates.
Ii [

= Note there are (few) conditions for arbitrary Markov chains to really
sample the distribution. i.e. each point has to be “reachable” ...
which I’'m not going to elaborate on ©
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