
Introduction to Statistics 
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CERN Summer Student Lecture Program  2012  

 

 … and Machine Learning 
(in the last lecture)  

Helge Voss 



Outline 

 Why Statistics 

 What is Probability :   

frequentist / Bayesian  interpretation 

Hypothesis testing 

 error types and Neyman-Pearson Lemma, confidence level 𝛼  and p-value 

 new particle searches – example: Higgs  

 Lecture 3 

Parameter estimation 

 Maximum Likelihood fit 

 𝜒2-fit 

Neyman Confidence belts 

(Monte Carlo Methods (Random numbers/Integration)  see slides) 

 Lecture 4 

Machine Learning / Pattern Recognition 
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Example: LEP SM Higgs Limit 
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median 

68% prob. content 

around median 

95% content of 

Exclusion limit → 𝑪𝑳𝒔+𝒃 

• draw “bands” around 

expectation for signal+bkg 

• excluded at 95%CL where 

“observed” lies outside 

95% CL band 



Example LEP Higgs Search 

4 Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012  

𝑪𝑳𝒔+𝒃 
𝟏 − 𝑪𝑳𝒃 

more signal like more background like 

 “avoid”  Being Lucky when setting the limit  and observing an event 

count less than the expected  background (we’ll come back to that, later…) 

 rather than “quoting” in addition the expected sensitivity 

 weight your CLs+b by it:   

𝑪𝑳𝒔 =
𝒑𝒔+𝒃
𝟏 − 𝒑𝒃

=
𝑪𝑳𝒔+𝒃
𝟏 − 𝑪𝑳𝒃

=
𝑷 𝑳𝑳𝑹 ≥ 𝑳𝑳𝑹𝒐𝒃𝒔|𝑯𝟏

𝑷 𝑳𝑳𝑹 ≤ 𝑳𝑳𝑹𝒐𝒃𝒔|𝑯𝟎
 

PDFBkg only 

PDFBkg +Sig 

CLs=0.05 95% exclusion 

limit 



ATLAS/CMS Higgs Search 
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Expected  
from SM  
Higgs at 
given mH 

 Aim for DISCOVERY  disprove 𝑯𝟎 = background ONLY 

 somewhat different test statistic: “profile Likelihood ratio” of  

Likelihood function 𝑳 𝝁, 𝜽 ,𝒘𝒊𝒕𝒉  𝝁 =
𝝈

𝝈𝑺𝑴
, 𝜽: 𝒏𝒖𝒊𝒔𝒂𝒏𝒄𝒆 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 

 p-value for discovery: Bkg only hypothesis (𝝁 = 𝟎)   

 p-value calculated “locally” for 

every  Higgs mass 

 Look at any “dip” in p-values 

over whole mass range 

 think as “binned” in Higgs 

mass resolution 

 Random samples of a 

distribution, histogram it  1 out 

of 20 bins (5%) will deviate 2σ 

from expectation..   e.t.c. 

 LOOK-ELSEWHERE-EFFECT  not taken into account  local p-value 



CLs and Excluded Cross Section 
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• 𝑪𝑳𝒔 =
𝒑𝒔+𝒃

𝟏−𝒑𝒃
 

 adjust 𝝁 =
𝝈

𝝈𝑺𝑴
 such that 

𝑪𝑳𝒔 = 𝟗𝟓%  

 limit on 𝝁 =
𝝈

𝝈𝑺𝑴
  

Message:  

They can nicely exclude everything at “high Confidence levels” 

apart from where they see the signal 



Systmatic Uncertainties 

 standard popular way:   (Cousin/Highland) 

integrate over all systematic errors and their “Probability distribution) 

marginalisation of the “joint probability density of measurement 

parameters and systematic error)  

 

 

 

“hybrid” :  frequentist intervals and Bayesian systematic 

has been shown to have possible large “undercoverage” for very small 

p-values /large significances  (i.e. underestimate the chance of “false 

discovery” !! 
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! Bayesian !   (probability of the systematic parameter) 

 LEP-Higgs:  generated MC to get the PDFs with “varying” param. 

within systematic uncertainty 

 essentially the same as “integrating over”  need probability  

density for “how these parameters vary” 



Systematic Uncertainties 
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 We can do better: systematic uncertainly as “free parameter” in the fit 

K.Cranmer Phystat2003 

 eg. background   sidebands  

 parametrise   𝒇𝒔𝒃 𝒏𝒔𝒊𝒅𝒆𝒃𝒂𝒏𝒅; 𝜽 = 𝒇𝒔𝒃 𝒏𝒔𝒃; 𝜽  

 uncertainty: scale/shape ?  

 free parameter 𝜽 in parametrisation  

  𝒇𝒔𝒃 𝒏𝒔𝒃 → 𝒇𝒔𝒃 𝒏𝒔𝒃; 𝜽  

 extrapolate  to signal region 

 bkg expecation:    

𝒃 = 𝒃 𝒏𝒔𝒃; 𝜽 =  𝒇𝒔𝒊𝒈(𝒏𝒔𝒃; 𝜽) 

Note: no need to specify prior probability 
 Likelihood function includes: 

 parameters of interest 

 parameters describing the influence of the sys. uncertainty  

 the latter are called: nuisance parameters  

𝑷 𝒏𝒔𝒊𝒈, 𝒏𝒃𝒌𝒈, 𝒏𝒔𝒃𝒐𝒃𝒔. 𝒔, 𝜽 = 𝑷 𝒏𝒔𝒊𝒈 + 𝒏𝒃𝒌𝒈 𝒔 + 𝒃 𝒏𝒔𝒃; 𝜽 𝑷(𝒏𝒔𝒃𝒐𝒃𝒔.|𝒇𝒔𝒃 𝒏𝒔𝒃; 𝜽 ) 

joint model measurement of interest sideband 

𝒏𝒔𝒊𝒈 + 𝒏𝒃𝒌𝒈 

𝜽𝟏 

𝜽𝟐 
𝒏𝒔𝒃𝒐𝒃𝒔.  



Nuisance Parameters  and 

Profile Likelihood 
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 Likelihood function includes: 

 parameters of interest 𝝁 =
𝝈

𝝈𝑺𝑴
  

 parameters of the sys. uncertainty  (nuisance parameters 𝜽) 

 

𝑳 = 𝑳 𝝁, 𝜽 ∶ 
 

  “most likely parameters 𝝁  and 𝜽  are found where the Likelihood is 

maximised 

 

 used in test statistic: 𝑳 𝝁, 𝜽  … i.e. Likelihood “maxmized” w.r.t. 𝜽 

But: let’s now talk about  

• “Maximum Likelihood” fitting  

• Parameter fitting in general 



Parameter Estimation 
  “estimator”    estimate characteristic parameter of parent 

distribution using a limited “sample” from the distribution. e.g.: 

 mean value:  “estimator”:   𝝁 =
𝟏

𝑵
 𝒙𝒊
𝑵
𝒊=𝟏  

 there are others:              𝝁 =
1

2
(𝑥𝑖𝑚𝑖𝑛

+ 𝑥𝑖𝑚𝑎𝑥
) 

variance:        “estimator” :  𝑽 =
𝟏

𝑵−𝟏
 𝒙𝒊 − 𝒙 𝟐𝑵
𝒊=𝟏  

median:  …..   

…. polarisation in your differential cross section         
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properties of estimators 

 biased or unbiased 

 large or small variance 

 distribution of 𝜽  on many 

measurements ?  

Glen Cowan:  𝜽𝒕𝒓𝒖𝒆 

 Small bias and small variance are typically “in conflict” 



Maximum Likelihood Estimatior 
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 want to measure/estimate some parameter 𝜽 

 e.g. mass, polarisation, etc.. 

 observe:  𝒙𝒊 = 𝒙𝟏, … . 𝒙𝒏 𝒊   𝒊 = 𝟏,𝑲  

 e.g 𝒏 observables for 𝑲  events 

 “hypothesis” i.e. PDF 𝐏(𝒙; 𝜽)  - distribution  𝒙    for given 𝜽  

  e.g. diff. cross section 

 𝑲 independent events:   P(𝒙𝟏,.. 𝒙𝑲; 𝜽) =  𝐏(𝒙𝒊; 𝜽)𝑲
𝒊  

 for fixed 𝒙  regard 𝐏(𝒙; 𝜽) as function of 𝜽  (i.e. Likelihood!   L(𝜽) ) 

 𝜽 close to 𝜽𝒕𝒓𝒖𝒆 → Likelihood  L(𝜽) will be large    

Glen Cowan: Statistical data analysis 

 try to maximise L(𝜽) 
 typically: 

 -2Log(L(𝜽))  

 minimise 

 𝜽  

 Maximum   

 Likelihood  estimator 



Maximum Likelihood Estimator 
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Lifetime 𝝉 =? :   decay times are exponentially distributed 𝑷 𝒕 =
𝟏

𝝉
𝒆−

𝒕

𝝉 

 can observe decay times > 𝒕𝟎 only     𝑷 𝒕 = 𝒆
𝒕𝟎
𝝉
𝟏

𝝉
𝐞−

𝐭

𝝉  

 data sample: 𝒕𝟏, 𝒕𝟐, … . . 𝒕𝑵 → 𝑳 𝝉 =  𝑷(𝒕𝒊)
𝑵
𝒊  

                                         −𝒍𝒏(𝑳 𝝉 ) =   𝒍𝒏(𝑷 𝒕𝒊 )
𝑵
𝒊  

                                                          = −𝑵
𝒕𝟎

𝝉
− 𝒍𝒏 𝝉 +

𝟏

𝝉
  𝒕𝒊

𝑵
𝒊  

zoom and  

subract offset  



Maximum Likelihood Estimator 
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 Error on estimated parameter 𝜽   (𝝉 )  ? 

 Taylor expansion: 

 −𝒍𝒏 𝑳 𝜽 ≈ −𝒍𝒏 𝑳 𝜽 −
𝒅𝒍𝒏 𝑳𝜽

𝒅𝜽 𝜽  
𝜽 − 𝜽 − 

𝟏

𝟐
 
𝒅𝟐𝒍𝒏 𝑳𝜽

𝒅𝜽𝟐 𝜽  
𝜽 − 𝜽 

𝟐
+ …  

 

 

 

 𝑳 𝜽 ≈ 𝑳 𝜽 𝒆
𝟏

𝟐

𝒅𝟐𝒍𝒏 𝑳𝜽

𝒅𝜽𝟐 𝜽  
𝜽−𝜽 

𝟐

    =    𝑳 𝜽 𝒆
−

𝜽−𝜽 
𝟐

𝟐𝝈𝟐     (CLT: Gaussian!) 

 

  
𝟏

𝝈𝟐
= −

𝒅𝟐𝒍𝒏 𝑳𝜽

𝒅𝜽𝟐 𝜽  
 

 −𝒍𝒏 𝑳 𝜽 ≈ −𝒍𝒏 𝑳 𝜽 + 
𝟏

𝟐𝝈𝟐
 𝜽 − 𝜽 

𝟐
 

 read off parabolic 𝒍𝒏 𝑳  curve:  −𝒍𝒏 𝑳 𝜽 ± 𝝈𝜽 = −𝒍𝒏 𝑳 𝜽 +
𝟏

𝟐
 

= 0 (minimum) 



Maximum Likelihood Estimator 

example:   PDF(x)   = Gauss(x,μ,σ)   L (𝜇|𝑥) =
1

2𝜋𝜎
exp −

𝑥−𝜇 2

2𝜎2
  

  
 estimator for 𝜇𝑡𝑟𝑢𝑒 from the data measured in an experiment 𝑥1, … . . 𝑥𝑁 

 

 full Likelihood  L 𝜇 𝑥 =  
1

2𝜋𝜎2
exp −

𝑥𝑖−𝜇
2

2𝜎2
𝑁
𝑖  

 

 typically: −𝟐𝐥𝐧 𝐋 𝜇 𝑥 =  
𝑥𝑖−𝜇

2

2𝜎2
𝑁
𝑖  + 𝑁

1

2𝜋𝜎2
Note: It’s a function of 𝜇 ! 

 −𝟐𝚫𝐥𝐧 𝐋 𝝁 =  
𝑥𝑖−𝜇

2

2𝜎2
𝑁
𝑖  → 𝝌𝟐 , least squares 
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Maximum Likelihood Estimator  
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 Maximum Likelihood is typically unbiased only in the limit 𝑲 → ∞  

 

 If Likelihood function is “Gaussian”   (often the case for large N 

 central limit theorem)  

 

 get  “error” estimate from or -2∆𝒍𝒐𝒈 𝑳 = 𝟏  

 

 if (very) none Gaussian  

 

 revert typically to (classical) Neyman confidence intervals 



Binned Maxmimum Likelihood 
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 rather than having P(𝒙𝟏,.. 𝒙𝑲; 𝜽) =  𝐏(𝒙𝒊; 𝜽)𝑲
𝒊   for each event I 

 use binned events  (i.e. a histogram) 

 e.g. if  𝐏(𝒙𝒊; 𝜽)  is not analytically available 

 

 in each bin 𝒊  there are 𝒏𝒊 events, Poisson distributed around 𝝁𝒊   
 get prediction 𝝁𝒊 = 𝝁𝒊(𝜽)  from “Monte Carlo” or analytical model 

𝑳 𝜽 =  𝑷 𝒏𝟏, …𝒏𝒏𝒃𝒊𝒏𝒔 ; 𝜽 = 
𝝁𝒊

𝒏𝒊

𝒏𝒊!
𝒆−𝝁𝒊

𝒊

 

-2l𝒏 𝑳 𝜽 = 𝟐 (𝒍𝒏 𝒏𝒊! − 𝒏𝒊𝒍𝒏 𝝁𝒊 + 𝝁𝒊)
𝒏𝒃𝒊𝒏𝒔
𝒊  



Goodness-of-Fit 
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 So far we know the “uncertainty” on the fitted value of 𝜽, but… 

 did the fitted model “really” describe the data?  

 

 The value of the lnL (log Likelihood)  at the minimum does not 

“mean anything”   calibrate! 

 determine the distribution of lnL fit results with Monte Carlo toys! 

 check your “data”-fit 

 



Goodness-of-Fit 
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 Easier with Gaussian distributed variables 

 least square fit 

 𝝌𝟐 𝜒2 =  
𝜇𝑖 −𝜇𝑖(𝜃)

2

2𝜎2
𝑛
𝑖   

has known distribution: 

Chi2 Probability: The 1- cumulative distr. of 𝑷(𝝌𝟐, 𝒏𝒇) −distribution 

 how often to expect “worse” fit result (i.e. with larger 𝝌𝟐 𝒗𝒂𝒍𝒖𝒆 at min.)  

𝑬 𝝌𝟐 = 𝒏𝒇 : #number of “degres of freedom” 

i.e. 𝒏 − #𝒇𝒊𝒕𝒕𝒆𝒅 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔  

 
𝑷 𝝌𝟐; 𝒏𝒇 = 

 



Classical Confidence Intervals 
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 Neymans Confidence belt  for CL α  (e.g. 90%) 

Feldman/Cousin (1998)  𝝁𝒐𝒃𝒔  

μ
h

y
p

o
th

e
ti

c
a

ll
y
  

tr
u

e
  

 each μhypothetically true has a PDF of 

how the measured values will be 

distributed 

 determine the (central) intervals 

(“acceptance region”) in these PDFs 

such that they contain α 

 do this for ALL μhyp.true  

 connect all the “red dots”  

confidence belt 

 

 measure 𝝁𝒐𝒃𝒔    :  

 conf. interval =[μ1, μ2] given by 

vertical line intersecting the belt.  

 by construction: for each 𝝁𝒐𝒃𝒔 . (taken according PDF(𝝁𝒕𝒓𝒖𝒆 ) the 
confidence interval [μ1, μ2] contains  𝝁𝒕𝒓𝒖𝒆 in α = 90% cases  

μ1 

μ2 

𝝁  



Classical Confidence Intervals 
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 Neymans Confidence belt  for CL α  (e.g. 90%) 

Feldman/Cousin(1998):  𝝁𝒐𝒃𝒔  

μ
h

y
p

o
th

e
ti

c
a
ll

y
  

tr
u

e
 

conf.interval =[μ1, μ2] given by 

vertical line intersecting the belt.  

 by construction: 

 𝑷 𝝁 < 𝝁𝒐𝒃𝒔 ;𝝁𝟐 =
𝟏−𝜶

𝟐
 

 𝑷 𝝁 > 𝝁𝒐𝒃𝒔 ;𝝁𝟏  =
𝟏−𝜶

𝟐
 

 if the true value were 𝝁𝒕𝒓𝒖𝒆  

 lies in [𝝁𝟏, 𝝁𝟐] if it intersects ▐ 

 𝝁𝒐𝒃𝒔  intersects  ▬  in 90% 
(that’s how it was constructed) 

 only those xobs give [𝝁𝟏, 𝝁𝟐]’s 

that intersect with the ▬ 

 90% of intervals cover 𝝁𝒕𝒓𝒖𝒆 

 

 

μ1 

μ2 

𝝁𝒕𝒓𝒖𝒆 

𝝁  



Combine Confidence Intervals 
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 𝝁 ∶ Gaussian PDF:   Neyman CL  Maximum Likelihood (ML) 

 In the limit of ML approximation  (Gaussian PDF’s)  combine “as 

usual”  

 But: don’t be fooled to believe you are combining statements 

about where the ‘true parameters’ are likely to be ! 

 Otherwise: 

 Combine individual measurements (not the derived confidence 

intervals)   

 construct “confidence belt” of combined measurement 

 

 

 obviously you cannot combine 

directly “upper limits” this way: 

 



Flip-Flop 
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Feldman/Cousins(1998) 

When to quote measuremt or a limit! 

 estimate Gaussian distributed quantity 𝝁  that cannot be < 0 (e.g. mass) 

 same Neyman confidence belt construction as before with 90%CL: 

 once for measurement (two sided, each tail contains 5% ) 

 once for limit (one sided tails contains 10%) 

 

 induces “undercovering”  as 

this acceptance region 

contains only  85% !!  

 decide:  if 𝒙𝒐𝒃𝒔<0 assume you =0 

 conservative 

 if you observe 𝝁𝒐𝒃𝒔 <3   

 quote upper limit only 

 if you observe𝝁𝒐𝒃𝒔 >3   

 quote a measurement 

 

𝝁    

𝝁
𝒉
𝒚
𝒑
.𝒕
𝒓
𝒖
𝒆
 



Some things people don’t like.. 
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Feldman/Cousins(1998). 

same example: 
 estimate Gaussian distributed quantity 𝝁   that cannot be < 0 (e.g. mass) 

 

 using proper confidence belt 

 assume:𝝁𝒐𝒃𝒔 =−𝟏. 𝟖 

 confidence interval is 

EMPTY!  

 Note: that’s OK from the 

frequentist interpretation 

   𝝁𝒕𝒓𝒖𝒆 ∈ 𝒄𝒐𝒏𝒇. 𝒊𝒏𝒕𝒆𝒓𝒗.  in 90% 

of (hypothetical)  measurements. 

 

Obviously we were ‘unlucky’ to 

pick one out of the remaining 

10% 

 nonetheless: tempted to “flip-flop” ???  tsz .. tsz.. tsz.. 

𝝁  

𝝁
𝒉
𝒚
𝒑
.𝒕
𝒓
𝒖
𝒆
 



Feldman Cousins: a Unified Approach  
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 How we determine the “acceptance” region for each μhyp.true  is up to us, as 

long as it covers the desired integral of size α (e.g. 90%) 

  standard: conf. central (for  measurement) or one sided (for limits)  

 include those “𝝁 ”, for which the likelihood ratio R is large, first: 

 

 𝑹 =
𝑳 𝝁 𝝁𝒉𝒚𝒑.𝒕𝒓𝒖𝒆

𝑳 𝝁 𝝁𝒃𝒆𝒔𝒕 
 

 𝝁𝒃𝒆𝒔𝒕  of 𝝁 given the estimator 𝝁  

 𝝁𝒃𝒆𝒔𝒕 =  𝝁    if in ALLOWED region 

   𝝁𝒃𝒆𝒔𝒕 =𝝁𝒎𝒊𝒏𝒂𝒍𝒍𝒐𝒘𝒆𝒅    otherwise 

α = 90% 

 

𝑹
 

No “empty intervals anymore! 

𝝁
𝒉
𝒚
𝒑
.𝒕
𝒓
𝒖
𝒆
 

𝝁  𝝁  

𝝁  

PDF for 𝝁𝒕𝒓𝒖𝒆 



Being Lucky… 
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 upper limit on signal 𝝁𝒔 on top of known (mean) background 𝝁𝒃 

 measure  𝒏, (𝒏𝒔+𝒏𝒃)  events   Poisson distribute  

 𝑷 𝒏 = 𝑷𝒐𝒊𝒔𝒔𝒐𝒏 𝒏, 𝝁𝒔 + 𝝁𝒃   

 Neyman:  draw confidence belt  with  

 “𝝁𝒔” on the “y-axis” (the possible true values of 𝝁𝒔) 

for fixed Background 𝝁𝒃=3  

 𝝁
𝒔
  

Glen Cowan: Statistical data analysis 
Background 𝝁𝒃  s
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rr

y
…

 t
h

e
 p

lo
ts

 d
o

n
’t

 m
a

tc
h

: 
o

n
e

 i
s

 o
f 

9
0

%
C

L
 t

h
e

 o
th

e
r 

fo
r 

9
5

%
C

L
 

observed n 

2 experiments (E1 and E2) 

 𝝁𝒃𝟏 = 𝟏, 𝝁𝒃𝟐𝟐 , both 

observe (out of luck) 0 ev. 

E1:  95% limit on  𝝁𝒔~𝟐 

E2:  95% limit on  𝝁𝒔~𝟏 

 UNFAIR !  ? 

90% of hyp.meas 𝒏 for hyp. 

mean.  𝝁𝒔 + 𝝁𝒃 = 𝟓 + 𝟑, 

excluding the 10% of 

smallest hyp. observations 



Being Lucky … 
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Bayesian:  rather than constructing Confidence belts: 

 turn Likelihood for 𝝁𝐬 (for given 𝒏𝒐𝒃𝒔)  into Posterior probability for 𝝁𝐬 

 𝒊. 𝒆 𝑷𝒐𝒊𝒔𝒔𝒐𝒏(𝒏𝒐𝒃𝒔; 𝝁𝐬 + 𝝁𝐛)  𝑳 𝒏𝒐𝒃𝒔; 𝝁𝒔  

  𝒑 𝝁𝒔 𝒏𝒐𝒃𝒔 = 𝑳 𝒏𝒐𝒃𝒔; 𝝁𝒔 ∗ 𝝅(𝝁𝒔)add prior probability on “s”:  

 

  𝝅 𝝁𝒔 =  
𝟎 

𝒖𝒏𝒊𝒇𝒐𝒓𝒎 
𝝁𝒔 < 𝟎
𝝁𝒔 > 𝟎

 

Background b 

U
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it
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n
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ig
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l 

𝒏𝒐𝒃𝒔 

Feldman/Cousins 
• no empty intervals, but still  

“unfairness” (better limits if 0 

observed and larger b-expected) 

• perfectly “fine” in frequentist 

interpretation: 

• should quote “limit+sensitivity” 0 1 10 

Feldman/Cousins(1998). 
Helene(1983). 



Being Lucky  -- Exclusion limits 

when 0 events observed 

 Cousin-Feldman Likelihood ordering (1998) 

 Roe Woodroofe  Constraint Likelihood ordering (1999) 

 Mandelkern Schultz  Maximum likelihood estimator (2000) 

 Cousins  why one should stick to likelihood ordering (2001) 
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 You see… all still very recent ! There’s always debate going on, 

and its all not simply “textbook” 



Summary 
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 CLs … the HEP limit; 

CLs  … ratio of “p-values” … statisticians don’t like that 

new idea: Power Constrained limits 

 rather than specifying “sensitivity” and “Neyman conf. interval” 

 “accept” limits only  within experimental “sensitivity ! 

lots of “different” ideas floating around how to “set limits” 

Hey! We don’t need that anymore …well at least not for the Higgs..  

  .. a bit about Profile Likelihood, systematic error. 

 Parameter estimation 

Maximum Likelihood fit  

𝝌𝟐 -fit  (least squares)  

 what to do if estimator is non-Gaussian: 

Neyman – confidence intervals 

what “bothers” people with them 

 Feldmans/Cousins  confidence belts/intervals 

unifies “limit” or “measurement” confidence belts 



Monte Carlo Methods 

 Monte Carlo Integration 
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 Bootstrap  (Monte Carlo re-sampling) 

 Jackknife 



Monte Carlo Integration 
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𝑬 𝒇 𝒛  →   ∫ 𝒇 𝒛 𝒑 𝒛 𝒅𝒛   

 

 

 

 

 

 

 

• often: the distribution 𝒑 𝒛  is not even 

fully known analytically: 

• often: the normalisation of the distr. 

𝒑 𝒛  is not known:  e.g. calculation of 

Bayesian expectation values  

• NOTE: for 𝑬 𝒇 𝒛  the normalisation of 

𝒑 𝒛  is irrelevant ! 

 

not solvable by analytic integration 

numeric integration 

 simple n equidistant step-wise 

summation? 

 o.k. in 1 or “very few” dimensions D 

 n-steps grows exponentially with D 

random sampling converges 

faster for large D 

 go to Monte Carlo 
sorry, no prove.. 



Hit-And-Miss  

 Rejection Sampling 
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 generate random numbers with distribution 𝒑 𝒛   
 generate uniform random numbers in “enclosing space” 

 for each such random number, accept it with probability  

+ 
= 

𝒑(𝒛)

𝒒(𝒛)
 

𝒑 𝒛  the function defining 

the distribution we want to 

sample from   

enclosing function : 𝒒 𝒛   
defines proposal 

distribution. 

 some function that you 

can easily sample from 

e.g. generate 2nd random number uniform 
in [𝟎; 𝒒 𝒛 ] and accept if it is > 𝒑 𝒛   

 accepted events follow 𝒑 𝒛  distribution 

 Note: 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒂𝒄𝒄𝒆𝒑𝒕𝒆𝒅 𝒆𝒗.× ∫ 𝒒 𝒛 𝒅𝒛 = ∫ 𝒑 𝒛 𝒅𝒛   



Rejection sampling 
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 one can get a bit more effective (less rejection) 

 none “square”/uniform proposal function 𝒒 𝒛  

 

 still sample “uniformly” in area under 𝒒 𝒛   and do as before 

 

if only integration, not 𝒑 𝒛  random event 

generation:                 even more clever:  

 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒂𝒄𝒄𝒆𝒑𝒕𝒆𝒅 𝒆𝒗.× ∫ 𝒒 𝒛 𝒅𝒛 = ∫ 𝒑 𝒛 𝒅𝒛   

there are also techniques 

that automatically adapt 

the proposal distribution 

iteratively 



Importance Sampling 
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 Rather than ‘rejecting’ events with p= 
𝒑(𝒛)

𝒒(𝒛)
  

 weigh them by factor 
𝒑(𝒛)

𝒒(𝒛)
  : “importance weights” 

 Note: in this way, the proposal 

𝒒 𝒛  does not even have to 

“enclose” 𝒑(𝒛), as weight can 

also be > 1 

 𝑬 𝒇 𝒙  also with unknown 

normalisations of 𝒑 𝒛  𝒂𝒏𝒅 𝒒 𝒛  

   𝒑 𝒛 =  
𝒑 (𝒛)

𝒁𝒑
  and 𝐪 𝒛 =  

𝒒 (𝒛)

𝒁𝒒
 

𝑬 𝒇 𝒛 = ∫ 𝒇 𝒛
𝒑 𝒛

𝒁𝒑
𝒅𝒛 =

𝒁𝒒

𝒁𝒑
∫ 𝒇 𝒛

𝒑 𝒛

𝒒 𝒛
𝒒 𝒛 𝒅𝒛 ≃

𝒁𝒒

𝒁𝒑

𝟏

𝑵
 

𝒑 𝒛 𝒊

𝒒 𝒛 𝒊
𝒇(𝒛(𝒊))

𝑵

 

with 
𝒁𝒑

𝒁𝒒
=

𝟏

𝒁𝒒
∫ 𝒑 𝒛 𝒅𝒛 = ∫

𝒑 𝒛

𝒒 𝒛
𝒒 𝒛 𝒅𝒛 ≃

𝟏

𝑵
 

𝒑 𝒛 𝒊

𝒒 𝒛 𝒊  𝑵  



Markov Chain Monte Carlo 
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 previous techniques  

 accuracy depends on how closely 𝒒 𝒛  follows 𝒑 𝒛  

 problem for “sparse” , “unknown” 𝒑 𝒛  

 

 every “random point” chosen independent of previous one 

 

 Markov chain: (e.g. random walk)  

 consecutive random steps depend on previous location in 

random variable space 

 allows to favor stepping into regions where 𝒑 𝒛  large 



Metropolis Algorithm 
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 Start somewhere in 𝒛 −space at random 

 sample this point 

 provide “proposal distribution” 𝒒 𝒛′ 𝒛  to jump from 𝒛 → 𝒛′ 
 e.g. Gaussian with some “metric” in 𝒛 −space , symmetric in 𝒛 ↔ 𝒛′  
 accept 𝒛′ if: 

 𝒑 𝒛′ > 𝒑 𝒛  

 or with probability 
𝒑(𝒛′)

𝒑(𝒛)
 only if 𝒑 𝒛′ < 𝒑 𝒛  

 sample either the new point (if accepted) or old point (again) 

 iterate 

 Sample points 𝒛 will  wander closer and 

closer to the “center”, still jumping  enough 

from time to time to sample the “whole space”.  

  samples of will follow the distribution 𝒑 𝒛  

(although consecutive samples are correlated) 

  normalisation of 𝒑 𝒛  not necessary for  

 sampling algorithm 

 determination of 𝑬[𝒇 𝒛 ] 



Gibbs Sampling 
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 just like the Metropolis algorithm apart from: 

 propose to jump only in 1-coordinate at 

the time 

 cycle through the coordinates. 

 Note there are (few) conditions for arbitrary Markov chains to really 

sample the distribution. i.e. each point has to be “reachable” … 

which I’m not going to elaborate on  


