
Introduction to Statistics 
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CERN Summer Student Lecture Program  2012  

 

 … and Machine Learning 
(in the last lecture)  

Helge Voss 



Outline 

 Why Statistics 

 What is Probability :   

frequentist / Bayesian  interpretation 

Hypothesis testing 

 error types and Neyman-Pearson Lemma, confidence level 𝛼  and p-value 

 new particle searches – example: Higgs  

 Lecture 3 

Parameter estimation 

 Maximum Likelihood fit 

 𝜒2-fit 

Neyman Confidence belts 

(Monte Carlo Methods (Random numbers/Integration)  see slides) 

 Lecture 4 

Machine Learning / Pattern Recognition 
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Example: LEP SM Higgs Limit 
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median 

68% prob. content 

around median 

95% content of 

Exclusion limit → 𝑪𝑳𝒔+𝒃 

• draw “bands” around 

expectation for signal+bkg 

• excluded at 95%CL where 

“observed” lies outside 

95% CL band 



Example LEP Higgs Search 
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𝑪𝑳𝒔+𝒃 
𝟏 − 𝑪𝑳𝒃 

more signal like more background like 

 “avoid”  Being Lucky when setting the limit  and observing an event 

count less than the expected  background (we’ll come back to that, later…) 

 rather than “quoting” in addition the expected sensitivity 

 weight your CLs+b by it:   

𝑪𝑳𝒔 =
𝒑𝒔+𝒃
𝟏 − 𝒑𝒃

=
𝑪𝑳𝒔+𝒃
𝟏 − 𝑪𝑳𝒃

=
𝑷 𝑳𝑳𝑹 ≥ 𝑳𝑳𝑹𝒐𝒃𝒔|𝑯𝟏

𝑷 𝑳𝑳𝑹 ≤ 𝑳𝑳𝑹𝒐𝒃𝒔|𝑯𝟎
 

PDFBkg only 

PDFBkg +Sig 

CLs=0.05 95% exclusion 

limit 



ATLAS/CMS Higgs Search 
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Expected  
from SM  
Higgs at 
given mH 

 Aim for DISCOVERY  disprove 𝑯𝟎 = background ONLY 

 somewhat different test statistic: “profile Likelihood ratio” of  

Likelihood function 𝑳 𝝁, 𝜽 ,𝒘𝒊𝒕𝒉  𝝁 =
𝝈

𝝈𝑺𝑴
, 𝜽: 𝒏𝒖𝒊𝒔𝒂𝒏𝒄𝒆 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 

 p-value for discovery: Bkg only hypothesis (𝝁 = 𝟎)   

 p-value calculated “locally” for 

every  Higgs mass 

 Look at any “dip” in p-values 

over whole mass range 

 think as “binned” in Higgs 

mass resolution 

 Random samples of a 

distribution, histogram it  1 out 

of 20 bins (5%) will deviate 2σ 

from expectation..   e.t.c. 

 LOOK-ELSEWHERE-EFFECT  not taken into account  local p-value 



CLs and Excluded Cross Section 
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• 𝑪𝑳𝒔 =
𝒑𝒔+𝒃

𝟏−𝒑𝒃
 

 adjust 𝝁 =
𝝈

𝝈𝑺𝑴
 such that 

𝑪𝑳𝒔 = 𝟗𝟓%  

 limit on 𝝁 =
𝝈

𝝈𝑺𝑴
  

Message:  

They can nicely exclude everything at “high Confidence levels” 

apart from where they see the signal 



Systmatic Uncertainties 

 standard popular way:   (Cousin/Highland) 

integrate over all systematic errors and their “Probability distribution) 

marginalisation of the “joint probability density of measurement 

parameters and systematic error)  

 

 

 

“hybrid” :  frequentist intervals and Bayesian systematic 

has been shown to have possible large “undercoverage” for very small 

p-values /large significances  (i.e. underestimate the chance of “false 

discovery” !! 
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! Bayesian !   (probability of the systematic parameter) 

 LEP-Higgs:  generated MC to get the PDFs with “varying” param. 

within systematic uncertainty 

 essentially the same as “integrating over”  need probability  

density for “how these parameters vary” 



Systematic Uncertainties 
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 We can do better: systematic uncertainly as “free parameter” in the fit 

K.Cranmer Phystat2003 

 eg. background   sidebands  

 parametrise   𝒇𝒔𝒃 𝒏𝒔𝒊𝒅𝒆𝒃𝒂𝒏𝒅; 𝜽 = 𝒇𝒔𝒃 𝒏𝒔𝒃; 𝜽  

 uncertainty: scale/shape ?  

 free parameter 𝜽 in parametrisation  

  𝒇𝒔𝒃 𝒏𝒔𝒃 → 𝒇𝒔𝒃 𝒏𝒔𝒃; 𝜽  

 extrapolate  to signal region 

 bkg expecation:    

𝒃 = 𝒃 𝒏𝒔𝒃; 𝜽 =  𝒇𝒔𝒊𝒈(𝒏𝒔𝒃; 𝜽) 

Note: no need to specify prior probability 
 Likelihood function includes: 

 parameters of interest 

 parameters describing the influence of the sys. uncertainty  

 the latter are called: nuisance parameters  

𝑷 𝒏𝒔𝒊𝒈, 𝒏𝒃𝒌𝒈, 𝒏𝒔𝒃𝒐𝒃𝒔. 𝒔, 𝜽 = 𝑷 𝒏𝒔𝒊𝒈 + 𝒏𝒃𝒌𝒈 𝒔 + 𝒃 𝒏𝒔𝒃; 𝜽 𝑷(𝒏𝒔𝒃𝒐𝒃𝒔.|𝒇𝒔𝒃 𝒏𝒔𝒃; 𝜽 ) 

joint model measurement of interest sideband 

𝒏𝒔𝒊𝒈 + 𝒏𝒃𝒌𝒈 

𝜽𝟏 

𝜽𝟐 
𝒏𝒔𝒃𝒐𝒃𝒔.  



Nuisance Parameters  and 

Profile Likelihood 
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 Likelihood function includes: 

 parameters of interest 𝝁 =
𝝈

𝝈𝑺𝑴
  

 parameters of the sys. uncertainty  (nuisance parameters 𝜽) 

 

𝑳 = 𝑳 𝝁, 𝜽 ∶ 
 

  “most likely parameters 𝝁  and 𝜽  are found where the Likelihood is 

maximised 

 

 used in test statistic: 𝑳 𝝁, 𝜽  … i.e. Likelihood “maxmized” w.r.t. 𝜽 

But: let’s now talk about  

• “Maximum Likelihood” fitting  

• Parameter fitting in general 



Parameter Estimation 
  “estimator”    estimate characteristic parameter of parent 

distribution using a limited “sample” from the distribution. e.g.: 

 mean value:  “estimator”:   𝝁 =
𝟏

𝑵
 𝒙𝒊
𝑵
𝒊=𝟏  

 there are others:              𝝁 =
1

2
(𝑥𝑖𝑚𝑖𝑛

+ 𝑥𝑖𝑚𝑎𝑥
) 

variance:        “estimator” :  𝑽 =
𝟏

𝑵−𝟏
 𝒙𝒊 − 𝒙 𝟐𝑵
𝒊=𝟏  

median:  …..   

…. polarisation in your differential cross section         
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properties of estimators 

 biased or unbiased 

 large or small variance 

 distribution of 𝜽  on many 

measurements ?  

Glen Cowan:  𝜽𝒕𝒓𝒖𝒆 

 Small bias and small variance are typically “in conflict” 



Maximum Likelihood Estimatior 
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 want to measure/estimate some parameter 𝜽 

 e.g. mass, polarisation, etc.. 

 observe:  𝒙𝒊 = 𝒙𝟏, … . 𝒙𝒏 𝒊   𝒊 = 𝟏,𝑲  

 e.g 𝒏 observables for 𝑲  events 

 “hypothesis” i.e. PDF 𝐏(𝒙; 𝜽)  - distribution  𝒙    for given 𝜽  

  e.g. diff. cross section 

 𝑲 independent events:   P(𝒙𝟏,.. 𝒙𝑲; 𝜽) =  𝐏(𝒙𝒊; 𝜽)𝑲
𝒊  

 for fixed 𝒙  regard 𝐏(𝒙; 𝜽) as function of 𝜽  (i.e. Likelihood!   L(𝜽) ) 

 𝜽 close to 𝜽𝒕𝒓𝒖𝒆 → Likelihood  L(𝜽) will be large    

Glen Cowan: Statistical data analysis 

 try to maximise L(𝜽) 
 typically: 

 -2Log(L(𝜽))  

 minimise 

 𝜽  

 Maximum   

 Likelihood  estimator 



Maximum Likelihood Estimator 
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Lifetime 𝝉 =? :   decay times are exponentially distributed 𝑷 𝒕 =
𝟏

𝝉
𝒆−

𝒕

𝝉 

 can observe decay times > 𝒕𝟎 only     𝑷 𝒕 = 𝒆
𝒕𝟎
𝝉
𝟏

𝝉
𝐞−

𝐭

𝝉  

 data sample: 𝒕𝟏, 𝒕𝟐, … . . 𝒕𝑵 → 𝑳 𝝉 =  𝑷(𝒕𝒊)
𝑵
𝒊  

                                         −𝒍𝒏(𝑳 𝝉 ) =   𝒍𝒏(𝑷 𝒕𝒊 )
𝑵
𝒊  

                                                          = −𝑵
𝒕𝟎

𝝉
− 𝒍𝒏 𝝉 +

𝟏

𝝉
  𝒕𝒊

𝑵
𝒊  

zoom and  

subract offset  



Maximum Likelihood Estimator 
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 Error on estimated parameter 𝜽   (𝝉 )  ? 

 Taylor expansion: 

 −𝒍𝒏 𝑳 𝜽 ≈ −𝒍𝒏 𝑳 𝜽 −
𝒅𝒍𝒏 𝑳𝜽

𝒅𝜽 𝜽  
𝜽 − 𝜽 − 

𝟏

𝟐
 
𝒅𝟐𝒍𝒏 𝑳𝜽

𝒅𝜽𝟐 𝜽  
𝜽 − 𝜽 

𝟐
+ …  

 

 

 

 𝑳 𝜽 ≈ 𝑳 𝜽 𝒆
𝟏

𝟐

𝒅𝟐𝒍𝒏 𝑳𝜽

𝒅𝜽𝟐 𝜽  
𝜽−𝜽 

𝟐

    =    𝑳 𝜽 𝒆
−

𝜽−𝜽 
𝟐

𝟐𝝈𝟐     (CLT: Gaussian!) 

 

  
𝟏

𝝈𝟐
= −

𝒅𝟐𝒍𝒏 𝑳𝜽

𝒅𝜽𝟐 𝜽  
 

 −𝒍𝒏 𝑳 𝜽 ≈ −𝒍𝒏 𝑳 𝜽 + 
𝟏

𝟐𝝈𝟐
 𝜽 − 𝜽 

𝟐
 

 read off parabolic 𝒍𝒏 𝑳  curve:  −𝒍𝒏 𝑳 𝜽 ± 𝝈𝜽 = −𝒍𝒏 𝑳 𝜽 +
𝟏

𝟐
 

= 0 (minimum) 



Maximum Likelihood Estimator 

example:   PDF(x)   = Gauss(x,μ,σ)   L (𝜇|𝑥) =
1

2𝜋𝜎
exp −

𝑥−𝜇 2

2𝜎2
  

  
 estimator for 𝜇𝑡𝑟𝑢𝑒 from the data measured in an experiment 𝑥1, … . . 𝑥𝑁 

 

 full Likelihood  L 𝜇 𝑥 =  
1

2𝜋𝜎2
exp −

𝑥𝑖−𝜇
2

2𝜎2
𝑁
𝑖  

 

 typically: −𝟐𝐥𝐧 𝐋 𝜇 𝑥 =  
𝑥𝑖−𝜇

2

2𝜎2
𝑁
𝑖  + 𝑁

1

2𝜋𝜎2
Note: It’s a function of 𝜇 ! 

 −𝟐𝚫𝐥𝐧 𝐋 𝝁 =  
𝑥𝑖−𝜇

2

2𝜎2
𝑁
𝑖  → 𝝌𝟐 , least squares 
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Maximum Likelihood Estimator  
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 Maximum Likelihood is typically unbiased only in the limit 𝑲 → ∞  

 

 If Likelihood function is “Gaussian”   (often the case for large N 

 central limit theorem)  

 

 get  “error” estimate from or -2∆𝒍𝒐𝒈 𝑳 = 𝟏  

 

 if (very) none Gaussian  

 

 revert typically to (classical) Neyman confidence intervals 



Binned Maxmimum Likelihood 
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 rather than having P(𝒙𝟏,.. 𝒙𝑲; 𝜽) =  𝐏(𝒙𝒊; 𝜽)𝑲
𝒊   for each event I 

 use binned events  (i.e. a histogram) 

 e.g. if  𝐏(𝒙𝒊; 𝜽)  is not analytically available 

 

 in each bin 𝒊  there are 𝒏𝒊 events, Poisson distributed around 𝝁𝒊   
 get prediction 𝝁𝒊 = 𝝁𝒊(𝜽)  from “Monte Carlo” or analytical model 

𝑳 𝜽 =  𝑷 𝒏𝟏, …𝒏𝒏𝒃𝒊𝒏𝒔 ; 𝜽 = 
𝝁𝒊

𝒏𝒊

𝒏𝒊!
𝒆−𝝁𝒊

𝒊

 

-2l𝒏 𝑳 𝜽 = 𝟐 (𝒍𝒏 𝒏𝒊! − 𝒏𝒊𝒍𝒏 𝝁𝒊 + 𝝁𝒊)
𝒏𝒃𝒊𝒏𝒔
𝒊  



Goodness-of-Fit 
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 So far we know the “uncertainty” on the fitted value of 𝜽, but… 

 did the fitted model “really” describe the data?  

 

 The value of the lnL (log Likelihood)  at the minimum does not 

“mean anything”   calibrate! 

 determine the distribution of lnL fit results with Monte Carlo toys! 

 check your “data”-fit 

 



Goodness-of-Fit 
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 Easier with Gaussian distributed variables 

 least square fit 

 𝝌𝟐 𝜒2 =  
𝜇𝑖 −𝜇𝑖(𝜃)

2

2𝜎2
𝑛
𝑖   

has known distribution: 

Chi2 Probability: The 1- cumulative distr. of 𝑷(𝝌𝟐, 𝒏𝒇) −distribution 

 how often to expect “worse” fit result (i.e. with larger 𝝌𝟐 𝒗𝒂𝒍𝒖𝒆 at min.)  

𝑬 𝝌𝟐 = 𝒏𝒇 : #number of “degres of freedom” 

i.e. 𝒏 − #𝒇𝒊𝒕𝒕𝒆𝒅 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔  

 
𝑷 𝝌𝟐; 𝒏𝒇 = 

 



Classical Confidence Intervals 
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 Neymans Confidence belt  for CL α  (e.g. 90%) 

Feldman/Cousin (1998)  𝝁𝒐𝒃𝒔  

μ
h

y
p

o
th

e
ti

c
a

ll
y
  

tr
u

e
  

 each μhypothetically true has a PDF of 

how the measured values will be 

distributed 

 determine the (central) intervals 

(“acceptance region”) in these PDFs 

such that they contain α 

 do this for ALL μhyp.true  

 connect all the “red dots”  

confidence belt 

 

 measure 𝝁𝒐𝒃𝒔    :  

 conf. interval =[μ1, μ2] given by 

vertical line intersecting the belt.  

 by construction: for each 𝝁𝒐𝒃𝒔 . (taken according PDF(𝝁𝒕𝒓𝒖𝒆 ) the 
confidence interval [μ1, μ2] contains  𝝁𝒕𝒓𝒖𝒆 in α = 90% cases  

μ1 

μ2 

𝝁  



Classical Confidence Intervals 
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 Neymans Confidence belt  for CL α  (e.g. 90%) 

Feldman/Cousin(1998):  𝝁𝒐𝒃𝒔  

μ
h

y
p

o
th

e
ti

c
a
ll

y
  

tr
u

e
 

conf.interval =[μ1, μ2] given by 

vertical line intersecting the belt.  

 by construction: 

 𝑷 𝝁 < 𝝁𝒐𝒃𝒔 ;𝝁𝟐 =
𝟏−𝜶

𝟐
 

 𝑷 𝝁 > 𝝁𝒐𝒃𝒔 ;𝝁𝟏  =
𝟏−𝜶

𝟐
 

 if the true value were 𝝁𝒕𝒓𝒖𝒆  

 lies in [𝝁𝟏, 𝝁𝟐] if it intersects ▐ 

 𝝁𝒐𝒃𝒔  intersects  ▬  in 90% 
(that’s how it was constructed) 

 only those xobs give [𝝁𝟏, 𝝁𝟐]’s 

that intersect with the ▬ 

 90% of intervals cover 𝝁𝒕𝒓𝒖𝒆 

 

 

μ1 

μ2 

𝝁𝒕𝒓𝒖𝒆 

𝝁  



Combine Confidence Intervals 
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 𝝁 ∶ Gaussian PDF:   Neyman CL  Maximum Likelihood (ML) 

 In the limit of ML approximation  (Gaussian PDF’s)  combine “as 

usual”  

 But: don’t be fooled to believe you are combining statements 

about where the ‘true parameters’ are likely to be ! 

 Otherwise: 

 Combine individual measurements (not the derived confidence 

intervals)   

 construct “confidence belt” of combined measurement 

 

 

 obviously you cannot combine 

directly “upper limits” this way: 

 



Flip-Flop 
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Feldman/Cousins(1998) 

When to quote measuremt or a limit! 

 estimate Gaussian distributed quantity 𝝁  that cannot be < 0 (e.g. mass) 

 same Neyman confidence belt construction as before with 90%CL: 

 once for measurement (two sided, each tail contains 5% ) 

 once for limit (one sided tails contains 10%) 

 

 induces “undercovering”  as 

this acceptance region 

contains only  85% !!  

 decide:  if 𝒙𝒐𝒃𝒔<0 assume you =0 

 conservative 

 if you observe 𝝁𝒐𝒃𝒔 <3   

 quote upper limit only 

 if you observe𝝁𝒐𝒃𝒔 >3   

 quote a measurement 

 

𝝁    

𝝁
𝒉
𝒚
𝒑
.𝒕
𝒓
𝒖
𝒆
 



Some things people don’t like.. 
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Feldman/Cousins(1998). 

same example: 
 estimate Gaussian distributed quantity 𝝁   that cannot be < 0 (e.g. mass) 

 

 using proper confidence belt 

 assume:𝝁𝒐𝒃𝒔 =−𝟏. 𝟖 

 confidence interval is 

EMPTY!  

 Note: that’s OK from the 

frequentist interpretation 

   𝝁𝒕𝒓𝒖𝒆 ∈ 𝒄𝒐𝒏𝒇. 𝒊𝒏𝒕𝒆𝒓𝒗.  in 90% 

of (hypothetical)  measurements. 

 

Obviously we were ‘unlucky’ to 

pick one out of the remaining 

10% 

 nonetheless: tempted to “flip-flop” ???  tsz .. tsz.. tsz.. 

𝝁  

𝝁
𝒉
𝒚
𝒑
.𝒕
𝒓
𝒖
𝒆
 



Feldman Cousins: a Unified Approach  
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 How we determine the “acceptance” region for each μhyp.true  is up to us, as 

long as it covers the desired integral of size α (e.g. 90%) 

  standard: conf. central (for  measurement) or one sided (for limits)  

 include those “𝝁 ”, for which the likelihood ratio R is large, first: 

 

 𝑹 =
𝑳 𝝁 𝝁𝒉𝒚𝒑.𝒕𝒓𝒖𝒆

𝑳 𝝁 𝝁𝒃𝒆𝒔𝒕 
 

 𝝁𝒃𝒆𝒔𝒕  of 𝝁 given the estimator 𝝁  

 𝝁𝒃𝒆𝒔𝒕 =  𝝁    if in ALLOWED region 

   𝝁𝒃𝒆𝒔𝒕 =𝝁𝒎𝒊𝒏𝒂𝒍𝒍𝒐𝒘𝒆𝒅    otherwise 

α = 90% 

 

𝑹
 

No “empty intervals anymore! 

𝝁
𝒉
𝒚
𝒑
.𝒕
𝒓
𝒖
𝒆
 

𝝁  𝝁  

𝝁  

PDF for 𝝁𝒕𝒓𝒖𝒆 



Being Lucky… 
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 upper limit on signal 𝝁𝒔 on top of known (mean) background 𝝁𝒃 

 measure  𝒏, (𝒏𝒔+𝒏𝒃)  events   Poisson distribute  

 𝑷 𝒏 = 𝑷𝒐𝒊𝒔𝒔𝒐𝒏 𝒏, 𝝁𝒔 + 𝝁𝒃   

 Neyman:  draw confidence belt  with  

 “𝝁𝒔” on the “y-axis” (the possible true values of 𝝁𝒔) 

for fixed Background 𝝁𝒃=3  

 𝝁
𝒔
  

Glen Cowan: Statistical data analysis 
Background 𝝁𝒃  s

o
rr

y
…

 t
h

e
 p

lo
ts

 d
o

n
’t

 m
a

tc
h

: 
o

n
e

 i
s

 o
f 

9
0

%
C

L
 t

h
e

 o
th

e
r 

fo
r 

9
5

%
C

L
 

observed n 

2 experiments (E1 and E2) 

 𝝁𝒃𝟏 = 𝟏, 𝝁𝒃𝟐𝟐 , both 

observe (out of luck) 0 ev. 

E1:  95% limit on  𝝁𝒔~𝟐 

E2:  95% limit on  𝝁𝒔~𝟏 

 UNFAIR !  ? 

90% of hyp.meas 𝒏 for hyp. 

mean.  𝝁𝒔 + 𝝁𝒃 = 𝟓 + 𝟑, 

excluding the 10% of 

smallest hyp. observations 



Being Lucky … 
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Bayesian:  rather than constructing Confidence belts: 

 turn Likelihood for 𝝁𝐬 (for given 𝒏𝒐𝒃𝒔)  into Posterior probability for 𝝁𝐬 

 𝒊. 𝒆 𝑷𝒐𝒊𝒔𝒔𝒐𝒏(𝒏𝒐𝒃𝒔; 𝝁𝐬 + 𝝁𝐛)  𝑳 𝒏𝒐𝒃𝒔; 𝝁𝒔  

  𝒑 𝝁𝒔 𝒏𝒐𝒃𝒔 = 𝑳 𝒏𝒐𝒃𝒔; 𝝁𝒔 ∗ 𝝅(𝝁𝒔)add prior probability on “s”:  

 

  𝝅 𝝁𝒔 =  
𝟎 

𝒖𝒏𝒊𝒇𝒐𝒓𝒎 
𝝁𝒔 < 𝟎
𝝁𝒔 > 𝟎

 

Background b 
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r 
li

m
it

 o
n

 s
ig
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l 

𝒏𝒐𝒃𝒔 

Feldman/Cousins 
• no empty intervals, but still  

“unfairness” (better limits if 0 

observed and larger b-expected) 

• perfectly “fine” in frequentist 

interpretation: 

• should quote “limit+sensitivity” 0 1 10 

Feldman/Cousins(1998). 
Helene(1983). 



Being Lucky  -- Exclusion limits 

when 0 events observed 

 Cousin-Feldman Likelihood ordering (1998) 

 Roe Woodroofe  Constraint Likelihood ordering (1999) 

 Mandelkern Schultz  Maximum likelihood estimator (2000) 

 Cousins  why one should stick to likelihood ordering (2001) 
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 You see… all still very recent ! There’s always debate going on, 

and its all not simply “textbook” 



Summary 
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 CLs … the HEP limit; 

CLs  … ratio of “p-values” … statisticians don’t like that 

new idea: Power Constrained limits 

 rather than specifying “sensitivity” and “Neyman conf. interval” 

 “accept” limits only  within experimental “sensitivity ! 

lots of “different” ideas floating around how to “set limits” 

Hey! We don’t need that anymore …well at least not for the Higgs..  

  .. a bit about Profile Likelihood, systematic error. 

 Parameter estimation 

Maximum Likelihood fit  

𝝌𝟐 -fit  (least squares)  

 what to do if estimator is non-Gaussian: 

Neyman – confidence intervals 

what “bothers” people with them 

 Feldmans/Cousins  confidence belts/intervals 

unifies “limit” or “measurement” confidence belts 



Monte Carlo Methods 

 Monte Carlo Integration 
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 Bootstrap  (Monte Carlo re-sampling) 

 Jackknife 



Monte Carlo Integration 
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𝑬 𝒇 𝒛  →   ∫ 𝒇 𝒛 𝒑 𝒛 𝒅𝒛   

 

 

 

 

 

 

 

• often: the distribution 𝒑 𝒛  is not even 

fully known analytically: 

• often: the normalisation of the distr. 

𝒑 𝒛  is not known:  e.g. calculation of 

Bayesian expectation values  

• NOTE: for 𝑬 𝒇 𝒛  the normalisation of 

𝒑 𝒛  is irrelevant ! 

 

not solvable by analytic integration 

numeric integration 

 simple n equidistant step-wise 

summation? 

 o.k. in 1 or “very few” dimensions D 

 n-steps grows exponentially with D 

random sampling converges 

faster for large D 

 go to Monte Carlo 
sorry, no prove.. 



Hit-And-Miss  

 Rejection Sampling 
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 generate random numbers with distribution 𝒑 𝒛   
 generate uniform random numbers in “enclosing space” 

 for each such random number, accept it with probability  

+ 
= 

𝒑(𝒛)

𝒒(𝒛)
 

𝒑 𝒛  the function defining 

the distribution we want to 

sample from   

enclosing function : 𝒒 𝒛   
defines proposal 

distribution. 

 some function that you 

can easily sample from 

e.g. generate 2nd random number uniform 
in [𝟎; 𝒒 𝒛 ] and accept if it is > 𝒑 𝒛   

 accepted events follow 𝒑 𝒛  distribution 

 Note: 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒂𝒄𝒄𝒆𝒑𝒕𝒆𝒅 𝒆𝒗.× ∫ 𝒒 𝒛 𝒅𝒛 = ∫ 𝒑 𝒛 𝒅𝒛   



Rejection sampling 
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 one can get a bit more effective (less rejection) 

 none “square”/uniform proposal function 𝒒 𝒛  

 

 still sample “uniformly” in area under 𝒒 𝒛   and do as before 

 

if only integration, not 𝒑 𝒛  random event 

generation:                 even more clever:  

 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒂𝒄𝒄𝒆𝒑𝒕𝒆𝒅 𝒆𝒗.× ∫ 𝒒 𝒛 𝒅𝒛 = ∫ 𝒑 𝒛 𝒅𝒛   

there are also techniques 

that automatically adapt 

the proposal distribution 

iteratively 



Importance Sampling 
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 Rather than ‘rejecting’ events with p= 
𝒑(𝒛)

𝒒(𝒛)
  

 weigh them by factor 
𝒑(𝒛)

𝒒(𝒛)
  : “importance weights” 

 Note: in this way, the proposal 

𝒒 𝒛  does not even have to 

“enclose” 𝒑(𝒛), as weight can 

also be > 1 

 𝑬 𝒇 𝒙  also with unknown 

normalisations of 𝒑 𝒛  𝒂𝒏𝒅 𝒒 𝒛  

   𝒑 𝒛 =  
𝒑 (𝒛)

𝒁𝒑
  and 𝐪 𝒛 =  

𝒒 (𝒛)

𝒁𝒒
 

𝑬 𝒇 𝒛 = ∫ 𝒇 𝒛
𝒑 𝒛

𝒁𝒑
𝒅𝒛 =

𝒁𝒒

𝒁𝒑
∫ 𝒇 𝒛

𝒑 𝒛

𝒒 𝒛
𝒒 𝒛 𝒅𝒛 ≃

𝒁𝒒

𝒁𝒑

𝟏

𝑵
 

𝒑 𝒛 𝒊

𝒒 𝒛 𝒊
𝒇(𝒛(𝒊))

𝑵

 

with 
𝒁𝒑

𝒁𝒒
=

𝟏

𝒁𝒒
∫ 𝒑 𝒛 𝒅𝒛 = ∫

𝒑 𝒛

𝒒 𝒛
𝒒 𝒛 𝒅𝒛 ≃

𝟏

𝑵
 

𝒑 𝒛 𝒊

𝒒 𝒛 𝒊  𝑵  



Markov Chain Monte Carlo 
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 previous techniques  

 accuracy depends on how closely 𝒒 𝒛  follows 𝒑 𝒛  

 problem for “sparse” , “unknown” 𝒑 𝒛  

 

 every “random point” chosen independent of previous one 

 

 Markov chain: (e.g. random walk)  

 consecutive random steps depend on previous location in 

random variable space 

 allows to favor stepping into regions where 𝒑 𝒛  large 



Metropolis Algorithm 
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 Start somewhere in 𝒛 −space at random 

 sample this point 

 provide “proposal distribution” 𝒒 𝒛′ 𝒛  to jump from 𝒛 → 𝒛′ 
 e.g. Gaussian with some “metric” in 𝒛 −space , symmetric in 𝒛 ↔ 𝒛′  
 accept 𝒛′ if: 

 𝒑 𝒛′ > 𝒑 𝒛  

 or with probability 
𝒑(𝒛′)

𝒑(𝒛)
 only if 𝒑 𝒛′ < 𝒑 𝒛  

 sample either the new point (if accepted) or old point (again) 

 iterate 

 Sample points 𝒛 will  wander closer and 

closer to the “center”, still jumping  enough 

from time to time to sample the “whole space”.  

  samples of will follow the distribution 𝒑 𝒛  

(although consecutive samples are correlated) 

  normalisation of 𝒑 𝒛  not necessary for  

 sampling algorithm 

 determination of 𝑬[𝒇 𝒛 ] 



Gibbs Sampling 
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 just like the Metropolis algorithm apart from: 

 propose to jump only in 1-coordinate at 

the time 

 cycle through the coordinates. 

 Note there are (few) conditions for arbitrary Markov chains to really 

sample the distribution. i.e. each point has to be “reachable” … 

which I’m not going to elaborate on  


