

Introduction to Statistics

CERN Summer Student Lecture Program 2012

Helge Voss

… and Machine Learning (in the last lecture)

- **Why Statistics**
- **What is Probability :**
	- **frequentist / Bayesian interpretation**
	- **Hypothesis testing**
		- error types and Neyman-Pearson Lemma, confidence level α and p-value
		- new particle searches example: Higgs
- **Lecture 3**
	- **Parameter estimation**
		- Maximum Likelihood fit
		- $\cdot \chi^2$ -fit
	- **Neyman Confidence belts**
	- **→ (Monte Carlo Methods (Random numbers/Integration) → see slides)**
- **Lecture 4**
	- **Machine Learning / Pattern Recognition**

Helge Voss **Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012** 2012

Example LEP Higgs Search

 "avoid" Being Lucky when setting the limit and observing an event count less than the expected background (we'll come back to that, later…) → rather than "quoting" in addition the expected sensitivity → weight your CL_{s+b} by it:

Helge Voss **Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012**

- **Example 3 arms for DISCOVERY** \rightarrow **disprove** H_0 **= background ONLY**
	- **somewhat different test statistic: "profile Likelihood ratio" of** Likelihood function $L(\mu, \theta)$, with $\mu = \frac{\sigma}{\sigma}$ σ_{SM} , $\boldsymbol{\theta}$: nuisance parameters
	- **P**-value for discovery: Bkg only hypothesis ($\mu = 0$)
- **p-value calculated "locally" for every Higgs mass**
- **Look at any "dip" in p-values over whole mass range**
	- **think as "binned" in Higgs mass resolution**
- **Random samples of a** distribution, histogram it \rightarrow 1 out **of 20 bins (5%) will deviate 2σ from expectation.. e.t.c.**

■ LOOK-ELSEWHERE-EFFECT ■ not taken into account **→ local p-value**

They can nicely exclude everything at "high Confidence levels" apart from where they see the signal

Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012 6

standard popular way: (Cousin/Highland)

integrate over all systematic errors and their "Probability distribution)

 \rightarrow marginalisation of the "joint probability density of measurement parameters and systematic error)

! Bayesian ! (probability of the systematic parameter)

 \rightarrow "hybrid" : frequentist intervals and Bayesian systematic

 \rightarrow has been shown to have possible large "undercoverage" for very small p-values /large significances (i.e. underestimate the chance of "false discovery" !!

 LEP-Higgs: generated MC to get the PDFs with "varying" param. within systematic uncertainty \rightarrow **essentially the same as "integrating over" → need probability density for "how these parameters vary"**

Systematic Uncertainties

We can do better: systematic uncertainly as "free parameter" in the fit

- eg. background **→** sidebands
- **parametrise** $f_{sb}(n_{sideband}; \theta) = f_{sb}(n_{sb}; \theta)$
- **uncertainty: scale/shape ?**
	- **Figure 1** free parameter θ in parametrisation
	- $\rightarrow f_{sb}(n_{sb}) \rightarrow f_{sb}(n_{sb};\theta)$
	- **extrapolate to signal region**
	- $→$ **bkg expecation:**

$$
b = b(n_{sb}; \theta) = f_{sig}(n_{sb}; \theta)
$$

Note: no need to specify prior probability

- **Likelihood function includes:**
	- **parameters of interest**
	- **parameters describing the influence of the sys. uncertainty**
	- $→$ **the latter are called: nuisance parameters**

$$
P(n_{sig}, n_{bkg}, n_{sb_{obs}} | s, \theta) = P(n_{sig} + n_{bkg} | s + b(n_{sb}; \theta)) P(n_{sb_{obs}} | f_{sb}(n_{sb}; \theta))
$$

joint model measurement of interest
sideband

- **Likelihood function includes:**
	- **P** parameters of interest $\mu = \frac{\sigma}{\sigma}$ σ_{SM}
	- **parameters of the sys. uncertainty (nuisance parameters** θ **)**

 $\boldsymbol{\rightarrow} L = L(\boldsymbol{\mu}, \boldsymbol{\theta}) :$

- **"** "most likely parameters μ and θ are found where the Likelihood is **maximised**
- **used in test statistic:** $L(\mu, \widehat{\theta})$... i.e. Likelihood "maxmized" w.r.t. θ

But: let's now talk about

- **"Maximum Likelihood" fitting**
- **Parameter fitting in general**

Parameter Estimation

 "estimator" estimate characteristic parameter of parent distribution using a limited "sample" from the distribution. e.g.:

1

 $\frac{1}{2}(x_{i_{min}} + x_{i_{max}})$

- **mean value: "estimator":** $\widehat{\mu} = \frac{1}{N}$ $\frac{1}{N} \sum_{i=1}^{N} x_i$ $i=1$
	- there are others:

variance: "estimator":
$$
\widehat{V} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2
$$

- \dots median:
- **…. polarisation in your differential cross section**

properties of estimators

 biased or unbiased large or small variance \rightarrow distribution of $\widehat{\theta}$ on many **measurements ?**

Small bias and small variance are typically "in conflict"

Helge Voss **Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012** 10

Maximum Likelihood Estimatior

- **want to measure/estimate some parameter**
	- **e.g. mass, polarisation, etc..**
- **observe:** $\vec{x}^i = (x_1, ..., x_n)_i$ $i = 1, K$
	- **e.g** *n* observables for *K* events
- **"** "hypothesis" i.e. PDF $P(\vec{x}; \theta)$ distribution \vec{x} for given θ
	- **e.g. diff. cross section**
	- \rightarrow *K* independent events: $P(\vec{x}^1, \dots, \vec{x}^K; \theta) = \prod_{i=1}^{K} P(\vec{x}^i; \theta)$ i
- **for fixed** \vec{x} regard $P(\vec{x}; \theta)$ as function of θ (i.e. Likelihood! $L(\theta)$)
	- θ close to $\theta_{true} \rightarrow$ Likelihood $L(\theta)$ will be large

 \rightarrow try to maximise $L(\theta)$ **typically:** \rightarrow -2Log($L(\theta)$) \rightarrow minimise $\rightarrow \hat{\theta}$

\rightarrow Maximum **Likelihood estimator**

Lifetime τ =? : decay times are exponentially distributed $P(t) = \frac{1}{2}$ $\boldsymbol{\tau}$ $e^{-\frac{t}{\tau}}$ $\boldsymbol{\tau}$

- **can observe decay times >** t_0 **only** \rightarrow $P(t) = e$ t_{0} $\boldsymbol{\tau}$ $\mathbf{1}$ $\overline{\boldsymbol{\tau}}$ $e^{-\frac{t}{\tau}}$ $\boldsymbol{\tau}$
- **data sample:** $\{t_1, t_2, ..., t_N\} \to L(\tau) = \prod_i^N P(t_i)$ i
- **•** $-\ln(L(\tau)) = \sum_{i}^{N} \ln(P(t_i))$ i **•** $= -N\left(\frac{t_0}{t_0}\right)$ τ $-ln(\tau)\bigg)+\frac{1}{2}$ $\frac{1}{\tau} \sum_{i}^{N} t_i$ i

- **Error on estimated parameter** $\widehat{\boldsymbol{\theta}}$ **(** $\widehat{\boldsymbol{\tau}}$ **) ?**
- **Taylor expansion:**

$$
-ln(L(\theta)) \approx -ln(L(\hat{\theta})) - \frac{[dln(L\theta)]}{d\theta} \hat{\theta} \left(\theta - \hat{\theta}\right) - \frac{1}{2} \left[\frac{d^2ln(L\theta)}{d\theta^2}\right]_{\hat{\theta}} \left(\theta - \hat{\theta}\right)^2 + ...
$$

\n= 0 (minimum)
\n
$$
\Rightarrow L(\theta) \approx L(\hat{\theta})e^{\frac{1}{2}\left[\frac{d^2ln(L\theta)}{d\theta^2}\right]_{\hat{\theta}}} \left(\theta - \hat{\theta}\right)^2 = L(\hat{\theta})e^{-\frac{(\theta - \hat{\theta})^2}{2\sigma^2}}
$$

\n
$$
\Rightarrow \frac{1}{\sigma^2} = -\left[\frac{d^2ln(L\theta)}{d\theta^2}\right]_{\hat{\theta}}
$$

\n
$$
\Rightarrow -ln(L(\theta)) \approx -ln(L(\hat{\theta})) + \frac{1}{2\sigma^2}(\theta - \hat{\theta})^2
$$

\n
$$
\Rightarrow
$$
 read off parabolic $ln(L)$ curve: $-ln(L(\hat{\theta} \pm \sigma_{\theta})) = -ln(L(\hat{\theta})) + \frac{1}{2}$

example: PDF(x) = Gauss(x,
$$
\mu, \sigma
$$
) \rightarrow L ($\mu | x$) = $\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$

 $2\sigma^2$

 \rightarrow estimator for μ_{true} from the data measured in an experiment x_1, \dots, x_N

- \rightarrow full Likelihood $L(\mu|x) = \prod_{i=1}^{N} \frac{1}{\sqrt{n}}$ $\overline{2\pi\sigma^2}$ $\exp \left(-\frac{(x_i - \mu)^2}{2a_i - a}\right)$ $2\sigma^2$ \boldsymbol{N} i
- \rightarrow typically: $-2\ln(L(\mu|x)) = \sum_{i}^{N} \left(\frac{(x_i-\mu)^2}{2\sigma^2}\right)$ $2\sigma^2$ $\frac{N}{i}\Big(\frac{(x_i-\mu)^2}{2\sigma^2}\Big)+N\frac{1}{\sqrt{2\pi\sigma^2}}$ Note: It's a function of μ !

$$
\rightarrow -2\Delta \ln(L(\mu)) = \sum_{i}^{N} \left(\frac{(x_i - \mu)^2}{2\sigma^2} \right) \rightarrow \chi^2, \text{least squares}
$$

■ Maximum Likelihood is typically unbiased only in the limit $K \rightarrow \infty$

- **If Likelihood function is "Gaussian" (often the case for large N central limit theorem)**
- \rightarrow get "error" estimate from or -2∆ $log(L) = 1$
- \rightarrow **if (very) none Gaussian**
	- $→$ **revert typically to (classical) Neyman confidence intervals**

- **rather than having** $P(\vec{x}^1, \dots, \vec{x}^K; \theta) = \prod_{i=1}^K P(\vec{x}^i; \theta)$ $\frac{K}{i}\mathbf{P}(\overrightarrow{\mathbf{x}}^{i};\boldsymbol{\theta})$ for each event **l**
- **use binned events (i.e. a histogram)**
	- \rightarrow e.g. if $P(\vec{x}^i; \theta)$ is not analytically available
- \rightarrow in each bin *i* there are n_i events, Poisson distributed around μ_i \rightarrow get prediction $\mu_i = \mu_i(\theta)$ from "Monte Carlo" or analytical model

$$
L(\theta) = P(n_1, ... n_{n_{bins}}; \theta) = \prod_i \frac{\mu_i^{n_i}}{n_i!} e^{-\mu_i}
$$

$$
-2\ln(L)(\theta) = 2\sum_{i}^{n_{bins}} (ln(n_i!)-n_i ln(\mu_i)+\mu_i)
$$

Goodness-of-Fit

- **So far we know the "uncertainty" on the fitted value of** θ **, but...**
- **did the fitted model "really" describe the data?**
- **The value of the lnL (log Likelihood) at the minimum does not "mean anything" calibrate!**
- **determine the distribution of lnL fit results with Monte Carlo toys!**
- → check your "data"-fit

Goodness-of-Fit

 \boldsymbol{n} i

Easier with Gaussian distributed variables

→ least square fit
\n→
$$
\chi^2
$$
 = $\sum_i^n \left(\frac{(\widehat{\mu}_i - \mu_i(\theta))^2}{2\sigma^2} \right)$

has known distribution: $E\big[\chi^2\big]=n_f$: #number of "degres of freedom" **i.e.** $n - # fitted parameters$

 $2\sigma^2$

Chi2 Probability: The 1- cumulative distr. of $P(\chi^2, n_f)$ –distribution \rightarrow how often to expect "worse" fit result (i.e. with larger χ^2 value at min.)

Neymans Confidence belt for CL α (e.g. 90%)

- **each μhypothetically true has a PDF of how the measured values will be distributed**
- **determine the (central) intervals ("acceptance region") in these PDFs such that they contain α**
- **do this for ALL μhyp.true**
- connect all the "red dots" > **confidence belt**

measure $\widehat{\mu_{obs}}$:

 \rightarrow conf. interval =[μ_1 , μ_2] given by **vertical line intersecting the belt.**

\blacksquare by construction: for each $\widehat{\mu_{obs.}}$ (taken according PDF(μ_{true}) the **confidence interval [μ_{1,} μ₂] contains** μ_{true} **in α = 90% cases**

Neymans Confidence belt for CL α (e.g. 90%)

conf.interval =[μ1, μ²] given by vertical line intersecting the belt.

by construction:

\n- $$
P(\mu < \widehat{\mu_{obs}}; \mu_2) = \frac{1 - \alpha}{2}
$$
\n- $$
P(\mu > \widehat{\mu_{obs}}; \mu_1) = \frac{1 - \alpha}{2}
$$
\n

- \blacksquare **if the true value were** μ_{true}
- \rightarrow lies in [μ_1 , μ_2] if it intersects \blacksquare
- $\rightarrow \widehat{\mu_{obs}}$ intersects \rightarrow in 90% **(that's how it was constructed)**
- \rightarrow only those x_{obs} give $[\mu_1, \mu_2]'$'s **that intersect with the ▬**
- \rightarrow 90% of intervals cover μ_{true}

- $\hat{\mu}$ **: Gaussian PDF: Neyman CL → Maximum Likelihood (ML)**
- **In the limit of ML approximation (Gaussian PDF's) combine "as usual"**
	- **But: don't be fooled to believe you are combining statements about where the 'true parameters' are likely to be !**
- **Otherwise:**
	- **Combine individual measurements (not the derived confidence intervals)**
	- **construct "confidence belt" of combined measurement**

obviously you cannot combine directly "upper limits" this way:

SME coefficient determined in [8] and $(CL)_{\bar{\nu}}$ the 99 C.L. upper limit determined here. We combine the two limits as

$$
1/(CL)^{2} = 1/(CL)^{2} + 1/(CL)^{2}_{\bar{\nu}},
$$

where (CL) is the combined 99.7% C.L. upper limit. The most sensitive apper limits we have determined with the MINOS neutrino and antineutrino data are given in Ta- \mathbf{b} M. As discussed, the way we determine the upper lim-

When to quote measuremt or a limit!

- **<u>• estimate Gaussian distributed quantity** $\hat{\mu}$ **that cannot be < 0 (e.g. mass)</u>**
- **same Neyman confidence belt construction as before with 90%CL:**
	- **once for measurement (two sided, each tail contains 5%)**
	- **once for limit (one sided tails contains 10%)**

same example:

Example 5 Example 3 and Stributed quantity $\hat{\mu}$ that cannot be < 0 (e.g. mass)

 using proper confidence belt assume: $\widehat{\mu_{obs}} = -1.8$ **confidence interval is EMPTY!**

 Note: that's OK from the frequentist interpretation $\mu_{true} \in [conf. \,interv.]$ in 90% **of (hypothetical) measurements.**

Obviously we were 'unlucky' to pick one out of the remaining 10%

nonetheless: tempted to "flip-flop" ??? tsz .. tsz.. tsz..

Feldman Cousins: a Unified Approach

- **How we determine the "acceptance" region for each μ_{hyp.true} is up to us, as long as it covers the desired integral of size α (e.g. 90%)**
- → standard: conf. central (for measurement) or one sided (for limits)
- \rightarrow include those " $\hat{\mu}$ ", for which the likelihood ratio R is large, first:

$$
R = \frac{L(\widehat{\mu}|\mu_{hyp,true})}{L(\widehat{\mu}|\widehat{\mu_{best}})}
$$

• $\widehat{\mu_{best}}$ of μ given the estimator $\widehat{\mu}$ $\rightarrow \widehat{\mu_{best}}$ = $\widehat{\mu}$ if in ALLOWED region $\rightarrow \widehat{\mu_{best}} = \mu_{min_{allowed}}$ otherwise

Being Lucky…

- **upper limit on signal** μ_s **on top of known (mean) background** μ_b
	- **measure** $n, (n_s+n_h)$ events \rightarrow Poisson distribute
	- \blacksquare $P(n) = Poisson(n, \mu_s + \mu_b)$
- **Neyman: draw confidence belt with**
	- \bullet " μ_s " on the "y-axis" (the possible true values of μ_s)

- **Bayesian: rather than constructing Confidence belts: -** turn Likelihood for $\mu_{\rm s}$ (for given n_{obs}) into Posterior probability for $\mu_{\rm s}$ *i. e Poisson* $(n_{obs}; \mu_s + \mu_b) \rightarrow L(n_{obs}; \mu_s)$
- $\mathbf{p}(\mu_s | n_{obs}) = L(n_{obs}; \mu_s) * \pi(\mu_s)$ add prior probability on "s":

 \blacksquare $\pi(\mu_s) = \{$ $\boldsymbol{0}$ uniform $\mu_{s} < 0$ $\mu_{s} > 0$

Feldman/Cousins

- **no empty intervals, but still "unfairness" (better limits if 0 observed and larger b-expected)**
- **perfectly "fine" in frequentist interpretation:**
- **should quote "limit+sensitivity"**

Helge Voss **Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012** 26 26

- Cousin-Feldman→ Likelihood ordering (1998)
- Roe Woodroofe → Constraint Likelihood ordering (1999)
- Mandelkern Schultz → Maximum likelihood estimator (2000)
- Cousins \rightarrow why one should stick to likelihood ordering (2001)

 You see… all still very recent ! There's always debate going on, and its all not simply "textbook"

CLs … the HEP limit;

- **CLs … ratio of "p-values" … statisticians don't like that**
- **new idea: Power Constrained limits**
	- rather than specifying "sensitivity" and "Neyman conf. interval"
	- "accept" limits only within experimental "sensitivity !
	- \rightarrow lots of "different" ideas floating around how to "set limits"
	- \rightarrow Hey! We don't need that anymore ... well at least not for the Higgs.. \odot
- **.. a bit about Profile Likelihood, systematic error.**
- **Parameter estimation**
	- **Maximum Likelihood fit**
	- χ^2 -fit (least squares)
- **what to do if estimator is non-Gaussian:**
	- **Neyman – confidence intervals**
	- **what "bothers" people with them**
- **Feldmans/Cousins confidence belts/intervals**
	- **unifies "limit" or "measurement" confidence belts**

Monte Carlo Methods

- Monte Carlo Integration

Bootstrap (Monte Carlo re-sampling)

Jackknife

Monte Carlo Integration

$E[f(z)] \rightarrow \int f(z)p(z)dz$

- often: the distribution $p(z)$ is not even **fully known analytically:**
- **often: the normalisation of the distr.** $p(z)$ is not known: e.g. calculation of **Bayesian expectation values**
- **NOTE:** for $E[f(z)]$ the normalisation of $p(z)$ is irrelevant !

→ not solvable by analytic integration numeric integration

 simple n equidistant step-wise summation?

- **o.k. in 1 or "very few" dimensions D**
- **→ n-steps grows exponentially with D**

random sampling converges faster for large D go to Monte Carlo

sorry, no prove..

generate random numbers with distribution $p(z)$

- **generate uniform random numbers in "enclosing space"**
- **for each such random number, accept it with probability**

e.g. generate 2nd random number uniform in $[0; q(z)]$ and accept if it is $> p(z)$

 \rightarrow accepted events follow $p(z)$ distribution

enclosing function : $q(z)$ **defines proposal distribution.** $→$ **some function that you**

can easily sample from

 $p(z)$ the function defining **the distribution we want to sample from**

Note: fraction of accepted $ev \times \int q(z) dz = \int p(z) dz$

Rejection sampling

 one can get a bit more effective (less rejection) \rightarrow none "square"/uniform proposal function $q(z)$

 \rightarrow still sample "uniformly" in area under $q(z)$ and do as before

there are also techniques that automatically adapt the proposal distribution iteratively

fraction of accepted $ev \times \int q(z) dz = \int p(z) dz$

if only integration, not $p(z)$ **random event** generation: even more clever: →

Helge Voss **Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012** 32

Rather than 'rejecting' events with p= $\frac{p(z)}{q(z)}$ $q(z)$ \rightarrow weigh them by factor $\frac{p(z)}{p(z)}$ $q(z)$ **: "importance weights"**

- **Note: in this way, the proposal** $q(z)$ does not even have to "enclose" $p(z)$, as weight can **also be > 1**
- \blacksquare $E[f(x)]$ also with unknown **normalisations of** $p(z)$ and $q(z)$ $\rightarrow p(z) = \frac{\widetilde{p}(z)}{z}$ $\overline{Z_p}$ **and** $q(z) = \frac{\tilde{q}(z)}{z}$ \overline{Z}_q

$$
E[f(z)] = \int f(z) \frac{\tilde{p}(z)}{Z_p} dz = \frac{Z_q}{Z_p} \int f(z) \frac{\tilde{p}(z)}{\tilde{q}(z)} q(z) dz \approx \frac{Z_q}{Z_p} \frac{1}{N} \sum_{i}^{N} \frac{\tilde{p}(z^{(i)})}{\tilde{q}(z^{(i)})} f(z^{(i)})
$$

with $\frac{Z_p}{Z_q} = \frac{1}{Z_q} \int \tilde{p}(z) dz = \int \frac{\tilde{p}(z)}{\tilde{q}(z)} q(z) dz \approx \frac{1}{N} \sum_{i}^{N} \frac{\tilde{p}(z^{(i)})}{\tilde{q}(z^{(i)})}$

- **previous techniques**
	- \rightarrow accuracy depends on how closely $q(z)$ follows $p(z)$
	- \rightarrow problem for "sparse", "unknown" $p(z)$
	- **every "random point" chosen independent of previous one**
- **Markov chain: (e.g. random walk)**
	- $→$ **consecutive random steps depend on previous location in random variable space**
	- \rightarrow allows to favor stepping into regions where $p(z)$ large

- Start somewhere in z –space at random
	- **sample this point**
- **provide "proposal distribution"** $q(z'|z)$ to jump from $z \rightarrow z'$
	- e.g. Gaussian with some "metric" in z -space, symmetric in $z \leftrightarrow z'$
	- **accept z' if:**
		- $\mathbf{p}(z') > p(z)$
		- **or with probability** $\frac{p(z')}{p(z)}$ $p(z)$ only if $p(z') < p(z)$

sample either the new point (if accepted) or old point (again)

iterate

- Sample points *z* will \rightarrow wander closer and **closer to the "center", still jumping enough from time to time to sample the "whole space".**
- \bullet \rightarrow samples of will follow the distribution $p(z)$ **(although consecutive samples are correlated)**
- \bullet \rightarrow normalisation of $p(z)$ not necessary for
	- **sampling algorithm**
	- \bullet **determination of** $E[f(z)]$

Gibbs Sampling

- **just like the Metropolis algorithm apart from:**
	- **propose to jump only in 1-coordinate at the time**
	- **cycle through the coordinates.**

 Note there are (few) conditions for arbitrary Markov chains to really sample the distribution. i.e. each point has to be "reachable" … which I'm not going to elaborate on