

Introduction to Statistics

CERN Summer Student Lecture Program 2012

Helge Voss

… and Machine Learning (in this last lecture)

- **Why Statistics**
- **What is Probability :**
	- **frequentist / Bayesian interpretation**
	- **Hypothesis testing**
		- error types and Neyman-Pearson Lemma, confidence level α and p-value
		- new particle searches example: Higgs
- **Lecture 3**
	- **Parameter estimation**
		- **Maximum Likelihood fit**
		- $\propto \chi^2$ -fit
	- **→ Neyman Confidence belts → Feldman/Cousins ...**
	- **→ (Monte Carlo Methods (Random numbers/Integration) → see slides)**

Lecture 4

Machine Learning / Pattern Recognition

- **What are Multivariate classification/regression algorithms (MVA)**
- **Multidimensional Likelihood (kNN : k-Nearest Neighbour)**
- **Projective Likelihood (naïve Bayes)**
- **Linear Classifier**
- **E** Non linear Classifiers
	- **E** Neural Networks
	- (Support Vector Machines \rightarrow too bad, no time..)
	- **Boosted Decision Trees**

MVA-Literature /Software Packages... a biased selection

Literature:

- T.Hastie, R.Tibshirani, J.Friedman, "*The Elements of Statistical Learning*", Springer 2001
- C.M.Bishop, "*Pattern Recognition and Machine Learning*", Springer 2006

Software packages for Mulitvariate Data Analysis/Classification

- **F** individual classifier software
	- e.g. "JETNET" C.Peterson, T. Rognvaldsson, L.Loennblad and many other packages
- **E** attempts to provide "all inclusive" packages
	- StatPatternRecognition: I.Narsky, arXiv: physics/0507143
	- TMVA: Höcker, Speckmayer, Stelzer, Therhaag, von Toerne, Voss, arXiv: physics/0703039 *or every ROOT distribution (development moved from SourceForge to ROOT repository)*
	- WEKA:<http://www.cs.waikato.ac.nz/ml/weka/>
	- "R": a huge data analysis library: <http://www.r-project.org/>

Conferences: PHYSTAT, ACAT,…

Regression

estimate a "functional behaviour" from a set of 'known measurements" ?

- **e.g. : "D"-variables that somehow characterize the shower in your calorimeter**
	- \rightarrow energy as function of the calorimeter shower parameters.

 \blacksquare if we had an analytic model (i.e. know the function is a nth -order polynomial) than we know how to fit this (i.e. Maximum Likelihood Fit)

 \rightarrow but what if we just want to "draw any kind of curve" and parameterize it?

Seems trivial ? \rightarrow The human brain has very good pattern recognition capabilities!

What if you have many input variables?

Helge Voss **Fig. 3** Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

better known: (linear) regression \rightarrow fit a known analytic function

e.g. the above 2-D example \rightarrow **reasonable function would be:** $f(x) = ax^2+by^2+c$

don't have a reasonable "model" ? \rightarrow need something more general:

■ *e.g.* piecewise defined splines, kernel estimators, decision trees to approximate f(x)

\rightarrow NOT in order to "fit a parameter" \rightarrow provide prediction of function value f(x) for new measurements x (where f(x) is not known)

100

Classification and Regression Visualisation in 2D

Test Statistic y(x):

- \rightarrow function of the the input variables :
- \rightarrow Classification: $y(x)$ =const \rightarrow decision boundaries !

 \rightarrow Regression: $y(x) =$ your target function

Helge Voss **Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012**

Event Classification

 $y(x)$: $R^{n}\rightarrow R$: the mapping from the "feature space" (observables) to one output variable

 $PDF_B(y)$. PDF_S(y): normalised distribution of y=y(x) for background and signal events (i.e. the "function" that describes the shape of the distribution)

with y=y(x) one can also say ${\sf PDF}_{{\sf B}}({\sf y}({\sf x}))$, ${\sf PDF}_{{\sf S}}({\sf y}({\sf x}))$: :

Probability densities for background and signal

now let's assume we have an unknown event from the example above for which $y(x) = 0.2$

 \Rightarrow PDF_B(y(x)) = 1.5 and PDF_S(y(x)) = 0.45

let f_S and f_B be the fraction of signal and background events in the sample, then:

 $f_{\rm S}$ PDI $\frac{S}{f_S}PDF_S(y) + f_B PDF$ d f_B be the fraction of signal and background eve $\frac{f_S\mathsf{PDF}_S(\mathsf{y})}{\frac{f_S\mathsf{PDF}_S(\mathsf{y})}{\frac{1}{1+\mathsf{OPT}_S(\mathsf{y})}} = \mathsf{P}(\mathsf{C} = \mathsf{S} \mid \mathsf{y})$ $\frac{f_s PDF_s(y)}{f_sPDF_s(y) + f_BPDF_B(y)}$ $= P(C = S |)$ $\overline{+}$ $\overline{\text{s}^{\text{PDF}}\text{s}}$ $\frac{1}{s} PDF_s(y) + f_B PDF_B$ i f_B be the fraction of signal and background eve $\frac{f_S\mathsf{PDF}_S(\mathsf{y})}{f_S(\mathsf{y})+f_\mathsf{PDF}(y)} = \mathsf{P}(\mathsf{C}=\mathsf{S} \mid \mathsf{y})$ $\frac{f_{\mathrm{S}}\mathsf{PDF}_{\mathrm{S}}(\mathsf{y})}{f_{\mathrm{S}}\mathsf{PDF}_{\mathrm{S}}(\mathsf{y})+f_{\mathrm{B}}\mathsf{PDF}_{\mathrm{B}}(\mathsf{y})}$ $= P(C = S | y)$ $\overline{+}$

is the probability of an event with measured $\mathbf{x} = \{x_1, \ldots, x_D\}$ that gives $y(x)$ to be of type signal

Event Classification

 $P(Class = C|\mathbf{x})$ (or simply $P(C|\mathbf{x})$) : probability that the event class is of C, given the measured observables $\mathbf{x} = \{x_1, \ldots, x_D\} \rightarrow y(\mathbf{x})$

Probability density distribution according to the measurements **x** and the given mapping function

Prior probability to observe an event of "class C" *i.e.* the relative abundance of "signal" versus "background" \Rightarrow P(C) = $f_c = \frac{n_c}{n_c}$

 n_{tot}

$$
P(Class = C | y) = \frac{P(y | C)P(C)}{P(y)}
$$

Posterior probability

Overall probability density to observe the actual Overall probability density to observe the actual
measurement y(x). *i.e.* $P(y) = \sum P(y | Class)P(Class)$

Classes

 It's a nice "exercise" to show that this application of Bayes' Theorem gives exactly the formula on the previous slide !

Signal(H¹) /Background(H⁰) :

■ Type 1 error: reject H₀ although true → background contamination

Significance α: background sel. efficiency **1**- a**: background rejection**

■ Type 2 error: accept H₀ although false → loss of efficiency Power: **1**- **β signal selection efficiency**

Helge Voss **Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012** 14

- Finding $y(x)$: $R^n \rightarrow R$
	- given a certain type of model class y(x)
	- "automatically" using "known" or "previously solved" events
		- **.** i.e. learn from known "patterns"
	- \bullet such that $y(x)$:
		- separates well Signal from Background in training data
		- (regression: fits well the target function for training events
		- \bullet ... AND in new events \rightarrow predictions
	- \rightarrow supervised machine learning
- Of course… there's no magic, we still need to:
	- choose the discriminating variables
	- choose the class of models (linear, non-linear, flexible or less flexible)
	- tune the "learning parameters" \rightarrow bias vs. variance trade off
	- check generalization properties
	- consider trade off between statistical and systematic uncertainties

Event Classification

- Unfortunately, the true probability densities functions are typically unknown: \rightarrow Neyman-Pearsons lemma doesn't really help us directly
- Monte Carlo simulation or in general cases: set of known (already classified) "events"
- 2 different ways: Use these "training" events to:
	- **E** estimate the functional form of $p(x|C)$: (e.g. the differential cross section folded with the detector influences) from which the likelihood ratio can be obtained
		- \rightarrow e.g. D-dimensional histogram, Kernel densitiy estimators, ...
	- \blacksquare find a "discrimination function" $y(x)$ and corresponding decision boundary (i.e. hyperplane* in the "feature space": $y(x) = const$ that optimially separates signal from background
		- \rightarrow e.g. Linear Discriminator, Neural Networks, ...

* hyperplane in the strict sense goes through the origin. Here I mean "affine set" to be precise

K- Nearest Neighbour

- **E** estimate probability density $P(x)$ in D-dimensional space:
- **The only thing at our disposal is our "training data"**
- Say we want to know $P(x)$ at "this" point "x"
- One expects to find in a volume V around point "**x**" N*∫P(x)dx events from a dataset with N events V
- **For the chosen a rectangular volume** \rightarrow K-events:

*x*1 *x*2 "**x**" *h*

$$
\Rightarrow
$$
 K-events:
\n
$$
K = \sum_{n=1}^{N} k \left(\frac{x - x_n}{h} \right),
$$
 with $k(u) = \begin{cases} 1, & |u_i| \leq \frac{1}{2}, i = 1...D \\ 0, & \text{otherwise} \end{cases}$ k(u): is called a Kernel function

■ K (from the "training data") \rightarrow estima

Classification: Determine $PDF_S(x)$ and $PDF_B(x)$ \rightarrow likelihood ratio as classifier!

the of average P(x) in the volume V:

\n
$$
\int P(x) \, dx = \frac{K}{N}
$$
\n
$$
P(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^D} k\left(\frac{x - x_n}{h}\right)
$$

 \rightarrow Kernel Density estimator of the probability density

P Regression: If each events with (x_1, x_2) carries a "function value" $f(x_1, x_2)$ (e.g. energy of incident particle) \rightarrow i.e.: the average function value N i version in the contract of \tilde{V}

Nearest Neighbour and Kernel

- **Density** Estimated according to P(x) **E** estimate probability density $P(x)$ in D-dimensional space:
- **The only thing at our disposal is our "training data"**
- Say we want to know $P(x)$ at "this" point "x"
- One expects to find in a volume V around point "**x**" N*∫P(x)dx events from a dataset with N events V
- **For the chosen a rectangular volume** \rightarrow K-events:
- **determine K from the "training data" with signal and** background mixed together

→ kNN : k-Nearest Neighbours relative number events of the various classes amongst the k-nearest neighbours

$$
y(x) = \frac{n_{s}}{K}
$$

 Kernel Density Estimator: replace "window" by "smooth" kernel function \rightarrow weight events by distance

- 1 $\overline{P(\mathbf{x})} = \frac{1}{N} \sum_{n=1}^{N} K_n(\mathbf{x} - \mathbf{x}_n)$ $=$ \mathbf{x}) = $\frac{1}{N} \sum_{l}^{N} K_{l}(\mathbf{x} - \mathbf{x})$ *h n K N*
- a general probability density estimator using kernel K
- **h**: "size" of the Kernel \rightarrow "smoothing parameter"
- chosen size of the "smoothing-parameter" \rightarrow more important than kernel function
- **h** too small: overtraining
- \blacksquare h too large: not sensitive to features in $P(x)$
- which metric for the Kernel (window)?
	- **normalise all variables to same range**
	- **ninclude correlations ?**
		- Mahalanobis Metric: $x^*x \rightarrow xV^{-1}x$
- a drawback of Kernel density estimators:
- Evaluation for any test events involves ALL TRAINING DATA \rightarrow typically very time consuming

"Curse of Dimensionality"

 $\operatorname{\mathsf{We}}\nolimits$ all $\operatorname{\mathsf{Know}}\nolimits$:

Filling a D-dimensional histogram to get a mapping of the PDF is typically unfeasable due to lack of Monte Carlo events.

Shortcoming of nearest-neighbour strategies:

 in higher dimensional classification/regression cases the idea of looking at "training events" in a reasonably small "vicinity" of the space point to be classified becomes difficult:

consider: total phase space volume $V=1^D$ for a cube of a particular fraction of the volume:

edge length=(fraction of volume) $\binom{1}{D}$

In 10 dimensions: in order to capture 1% of the phase space \rightarrow 63% of range in each variable necessary \rightarrow that's not "local" anymore... \odot

Therefore we still need to develop all the alternative classification/regression techniques

Bellman, R. (1961), Adaptive

Control Processes: A Guided Tour, Princeton

University Press.

- No hard cuts on individual variables,
- **E** allow for some "fuzzyness": one very signal like variable may counterweigh another less signal like variable

optimal method if correlations $== 0$ (Neyman Pearson Lemma)

try to "eliminate" correlations \rightarrow **e.g. linear de-correlation** PDE introduces fuzzy logic

Helge Voss **22** Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

 X_1

Classifier Training and Loss-Function

KNN, Likelihood \rightarrow **estimate underlying PDF in D- and 1- dimension** \rightarrow exploit Neyman Pearson lemma \rightarrow limitations: curse of dimensionality and correlations

- Alternative: provide a set of "basis" functions (or model):
	- \bullet $y(x) = \sum w_i h_i(x)$
	- adjust parameters $w_i \rightarrow$ optimally separating hyperplane (surface) \rightarrow called "training"
- optimally separating \rightarrow minimum in expectation value of a Loss function: $L(y_{true}, y(x))$ penalizes prediction errors in training
	- $E[L] = E[(y_{true} y(x))^2]$ squared error loss (regression) $E[L] = E[|y_{true} - y(x)|]$ misclassification error (classification) \rightarrow minimize
- where: regression: y_{true} the functional value of training events classification: y_{true} =1 for signal, =0 (-1) background

General:
$$
y(x=x, ..., x)
$$
 \overline{y}_D $\sum_{i=0}^{M} w_i h_i(x)$

$$
\underline{\text{Linear Discriminant:}} \quad \mathbf{y}(\mathbf{x} = \{ \mathbf{x} \ , \dots, \mathbf{x} \ \boldsymbol{\theta}_{\mathbf{D}} \mathbf{w} \ + \ \mathbf{w} \ \mathbf{x} \}_{i=1}^{D} \ \mathbf{y} \}
$$

i.e. any linear function of the input variables: \rightarrow linear decision boundaries

determine PDF of the test statistic $y(x)$ \rightarrow determine the "weights" w that separate "best"

Normalized Signal Background 1.6 1.4 1.2 0.8 0.6 **yB** 0.4 $\mathbf{y}_{\mathbf{S}}^{\mathsf{L}}$ 0.2 $\mathbf 0$ 1.5 -0.5 0.5 -1.5 $\mathbf{1}$ y

determine the "weights" w that do "best"

- **Maximise "separation" between the S and B**
- \rightarrow minimise overlap of the distribution y_S and y_B **- maximise the distance between the two mean** values of the classes
	- **-** minimise the variance within each class

 \rightarrow maximise

 $\frac{1}{B} + \sigma_{y_s}^2$ **2** $\frac{B}{B}$) - **E**(y_s $(\frac{1}{2})$ - E(y
 $(\frac{2}{2} + \sigma^2)$ $y_{\rm B}^2 + \sigma_y^2$ $J(\vec{w}) = \frac{(E(y_B) - E(y_S))}{\sigma_{y}^2 + \sigma_{y}^2}$ **y**_B) - **E**(**y**_S))²
 $\sigma_{y_B}^2$ + $\sigma_{y_S}^2$ T $\vec{w}^T B \vec{w}$ = "in between" variance $=\frac{\vec{w}^T B \vec{w}}{\vec{w}^T W \vec{w}}$ $\frac{\vec{w}^\text{T} B \vec{w}}{\vec{w}^\text{T} W \vec{w}} = \frac{\text{"in between" variance}}{\text{"within" variance}}$ \vec{v}_{w} J \sim $\vec{w} \le 0 \Rightarrow \vec{w} \propto W^{1} \left\langle \vec{x} \right\rangle_{s} - \left\langle \vec{x} \right\rangle_{B}$ the Fisher coefficients
note: these quantities can be calculated from the training data $\vec{\nabla}_{w}$ J \sim ฟั \leq 0 ⇒ \vec{w} ∝ $W^{1}\leftarrow \vec{X}_{S}$ \sim $\langle \vec{X}_{B} \rangle$ the Fisher coefficients

Neural Networks

for "arbitrary" non-linear decision boundaries \rightarrow y(x) non-linear function

Think of $h_i(x)$ as a set of "basis" functions

If h(x) is sufficiently general (i.e. non linear), a linear combination of "enough" basis function should allow to describe any possible discriminating function y(x)

there are also mathematical proves for previous statement.

$$
h_i(\bm{x})
$$

Imagine you chose do the following:

i ^{I I}i

M

 $y(\vec{x}) = \sum (w_i h_i(\vec{x}))$

i

$$
y(x) = \sum_{i}^{M} W_{0i} A \left(\mathbf{w}_{i0} + \sum_{j=1}^{D} \mathbf{w}_{ij} \cdot \mathbf{x}_{j} \right)
$$

A(x)= $\frac{1}{4 \cdot 2^{-x}}$: $1 + e^{-x}$ the sigmoid function

 $y(x) =$

a linear combination of non linear function(s) of linear combination(s) of $\sum_{i} (w_i h_i(\vec{x}))$
you chose do the
 $\sum_{i=1}^N w_{0i} \mathbf{A} \left(\mathbf{w}_{i0} + \sum_{j=1}^D w_{j0j} \mathbf{A} \right)$
r combination of
near function(s) c
ar combination(s)
the input data

Ready is the Neural Network

- **Nodes in hidden layer represent the "activation functions" whose arguments are linear** combinations of input variables \rightarrow non-linear response to the input
- **The output is a linear combination of the output of the activation functions at the internal nodes**
- Input to the layers from preceding nodes only \rightarrow feed forward network (no backward loops)
- It is straightforward to extend this to "several" input layers

nodesneurons links(weights)synapses **Neural network: try to simulate reactions of a brain to certain stimulus (input data)**

Neural Network Training

where

idea: using the "training events" adjust the weights such, that

- \rightarrow y(x) \rightarrow 0 for background events
- \rightarrow y(x) \rightarrow 1 for signal events

how do we adjust ?

- minimize Loss function:

$$
L(w) = \sum_{i}^{\text{events}} (y(x_i) - y(C))^2
$$

i.e. use usual "sum of squares" or misclassification error

> (C) \int $\left\{ \right.$ $\overline{\mathcal{L}}$ 1for C = signal $y(C) =$ $\overline{0}$ for C = backgr.

true event type predicted event type

 $y(x)$: very "wiggly" function \rightarrow many local minima.

 \rightarrow one global overall fit not efficient/reliable

 \rightarrow back propagation (learn from experience, gradually adjust your resonse)

 \rightarrow online learning (update event by event)

 \rightarrow batch learning (update after seeing the whole sample)

Neural Network Training back-propagation

Start with random weights

adjust weights in each step \rightarrow **steepest descend of the "Loss"- function L**

wⁿ⁺¹ = $w^n + \eta \cdot \vec{\nabla}_w L(w)$ = η learning rate $\ddot{}$ $= w^n + \eta \cdot \vec{\nabla}_w L(w) =$

$$
L(w) = (y(x_i) - y(C))^2
$$

 i $j=1$

 $_{0i}$ A \mid W_{i0} + \sum W_{ij} \cdot X_j

D

 $y(x) = \sum_{i}^{M} w_{0i} A \left(w_{i0} + \sum_{j=1}^{D} w_{ij} \cdot x_j \right)$

M

for weights connected to output nodes

For weignis connected to output nodes
\n
$$
\frac{\partial L}{\partial w_{0i}} = (y(x) - y(C)) A \left(w_{i0} + \sum_{j=1}^{D} w_{ij} \cdot x_j \right)
$$

for weights not connected to output nodes

… a bit more complicated formula

note: all these gradients are easily calculated from the training event

training is repeated n-times over the whole training data sample. how often ??

 \rightarrow early stopping: traditional way to avoid overtraining

 \rightarrow there are also other "regularisation"

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Overtraining

- **training: n-times over all training data how often ??**
- **If it seems intuitive that this boundary will give better results in another statistically independent data set than that one**

Boosted Decision Trees

Root node

Boosted Decision Trees

- **Decision Tree: Sequential application of cuts splits** the data into nodes, where the final nodes (leafs) **Root** classify an event as signal or background node Each branch \rightarrow one standard "cut" sequence $xi > c1$ $xi < c1$ easy to interpret, visualised independent of monotonous variable transformations, immune against outliers $xj > c2$ $xj < c2$ $xj > c3$ $xj < c3$ weak variables are ignored (and don't (much) deteriorate performance) S S B Disadvatage \rightarrow very sensitive to statistical fluctuations in training data $xk > c4$ $xk < c4$ S B Boosted Decision Trees (1996): combine a whole forest of Decision Trees, derived from the same sample, e.g. using different event weights. \rightarrow became popular in HEP since MiniBooNE, B.Roe et.a., NIM 543(2005) **• overcomes the stability problem**
	- **n** increases performance

$$
y(x) = \sum_{i}^{N_{\text{Classifier}}} w_i C^{(i)}(x)
$$

Adaptive Boosting (AdaBoost)

■ AdaBoost re-weights events misclassified by previous classifier by:

$$
\frac{1 - f_{err}}{f_{err}} \text{ with :}
$$
\n
$$
f_{err} = \frac{\text{misclassified events}}{\text{all events}}
$$

■ AdaBoost weights the classifiers also using the error rate of the individual classifier according to:

$$
y(x) = \sum_{i}^{N_{\text{Classifier}}} log\left(\frac{1 - f_{\text{err}}^{(i)}}{f_{\text{err}}^{(i)}}\right) C^{(i)}(x)
$$

AdaBoost: A simple demonstration

The example: (somewhat artificial…but nice for demonstration) :

- Data file with three "bumps"
- Weak classifier (i.e. one single simple "cut" \leftrightarrow decision tree stumps)

a) Var0 > 0.5 $\rightarrow \varepsilon_{\text{sig}}$ =66% $\varepsilon_{\text{bkg}} \approx 0$ % misclassified events in total 16.5% or b) Var0 < -0.5 $\rightarrow \varepsilon_{\text{sig}}$ =33% $\varepsilon_{\text{bkg}} \approx 0$ % misclassified events in total 33%

the training of a single decision tree stump will find "cut a)"

AdaBoost: A simple demonstration

The first "tree", choosing cut a) will give an error fraction: err = 0.165

- \rightarrow before building the next "tree": weight wrong classified training events by (1-err/err)) \approx 5
- the next "tree" sees essentially the following data sample:

Bagging and Randomised Trees

- Bagging:
	- **Combine trees grown from "bootstrap" samples**
	- (i.e re-sample training data with replacement)
- Randomised Trees: (Random Forest: trademark L.Breiman, A.Cutler)
	- **Combine trees grown with:**
		- **random bootstrap (or subsets) of the training data only**
		- consider at each node only a random subsets of variables for the split
		- NO Pruning (despite possibly larger trees than AdaBoost) !
- or any "combination" of Bagging/Randomising/Boosting
- **These combined classifiers work surprisingly well, are very** stable and almost perfect "out of the box" classifiers

General Advice for (MVA) Analyses

- There is no magic in MVA-Methods:
	- no need to be too afraid of "black boxes" \rightarrow they are not sooo hard to understand
	- you typically still need to make careful tuning and do some "hard work"
	- no "artificial intelligence" … just "fitting decision boundaries" in a given model
- The most important thing at the start is finding good observables
	- good separation power between S and B
	- little correlations amongst each other
	- no correlation with the parameters you try to measure in your signal sample!
- Think also about possible combination of variables
	- this may allow you to eliminate correlations
		- rem.: you are MUCH more intelligent than what the algorithm will do
- Apply pure preselection cuts and let the MVA only do the difficult part.
- "Sharp features should be avoided" \rightarrow numerical problems, loss of information when binning is applied
	- simple variable transformations (i.e. log(variable)) can often smooth out these areas and allow signal and background differences to appear in a clearer way
- Treat regions in the detector that have different features "independent"
	- can introduce correlations where otherwise the variables would be uncorrelated!

MVA and Systematic Uncertainties

- Multivariate Classifiers THEMSELVES don't have systematic uncertainties
	- \rightarrow even if trained on a "phantasy Monte Carlo sample"
		- **there are only "bad" and "good" performing classifiers !**
			- OVERTRAINING is NOT a systematic uncertainty !!
			- difference between two classifiers resulting from two different training runs DO NOT CAUSE SYSTEMATIC ERRORS
		- **Same as with "well" and "badly" tuned classical cuts**
		- \blacksquare MVA classifiers: \rightarrow only select a region(s) in observable space

Efficiency estimate (Monte Carlo) \rightarrow **statistical/systematic uncertainty**

- **n** involves "estimating" (uncertainties in) distribution of $PDF_{y_{S(B)}}$
	- **statistical "fluctuations"** \rightarrow **re-sampling (Bootstrap)**
	- " "smear/shift/change" input distributions and determine $PDF_{y_{S(B)}}$
- \rightarrow estimate systematic error/uncertainty on efficiencies
- Only involves "test" sample... systematic uncertainties have nothing to do with the training !!

- **minimize "systematic" uncertainties**
- \rightarrow "classical cuts" : do not cut near steep edges, or in regions of large sys. uncertainty
- \rightarrow hard to "translate": try to:
	- \rightarrow artificially degrade discriminative power (shifting/smearing) of systematically "uncertain" observables IN THE TRAINING
- \rightarrow Don't be afraid of correlations!
	- \rightarrow typically "kinematically generated" \rightarrow easily modeled correctly
	- \rightarrow "classical cuts" are also affected by "wrongly modeled correlations"
	- \rightarrow MVA method let's you spot this
		- \rightarrow look at "projections" of input variables
		- \rightarrow + the combined MVA test statistic "y(x)"!

- Multivariate Classifiers (Regressors) \rightarrow 1 dimensional test statistic **y(x) and y(x)>c defines decision boundary**
- **Mulit-dimensional (and projective) Likelihood**
	- **estimate the PDF and exploint Neyman-Pearsons Lemma: best test statistic is the Likelihood ratio**
- **Other classifiers "fit" a decision boundary "model"**
	- **Linear: Linear Classifier (e.g. Fisher Discriminant)**
	- **Non-Linear**
		- Neural Network
		- **Boosted Decision Trees**
		- (Support Vector Machines) \rightarrow very nice but hard to explain in 5min...
- **No "magic" or "intelligence" … just fitting !**
- **Once one understands what "they are" you know**
	- **systematic uncertainties don't lie in the training !!**
	- **estimate them similar as you'd do in classical cuts**

Backup and Left overs…

 \rightarrow not a good idea \rightarrow see "chessboard" **Decision trees: grow large tree and then**

Boosted Decision tree: early stopping

leaf-nodes classify S , B according to the majority of events or give a S/B probability

Continue splitting until:

'prune'

"A Statistical View of Boosting" (Friedman 1998 et.al)

Abstract:

 …. For the two-class problem, boosting can be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multi-class generalizations based on multinomial likelihood are derived that exhibit performance comparable to other recently proposed multi-class ….

Boosted Decision Trees: two different interpretations

 give events that are "difficult to categorize*"* more weight and average afterwords the results of all classifiers that were obtained with different weights

- \rightarrow see each Tree as a "basis function" of a possible classifier \rightarrow
	- boosting or bagging is just a mean to generate a set of "basis funciton"
	- linear combination of basis functions gives final classifier or: final classifier is an expansion in the basis functions**.**

$$
y(\vec{\alpha},x) = \sum_{\text{tree}} \alpha_{\text{i}} T_{\text{i}}(x)
$$

- every "boosting" algorithm can be interpreted as optimising in a "greedy stagewise" manner (*i.e.* from the current point in the optimisation –*e.g.building of the decision tree forest-* one chooses the parameters for the next boost step (weights) such that one moves a long the steepest gradient of the loss function)
- AdaBoost: "exponential loss function" = $exp(-y_0y(\alpha, x))$ where $y_0 = -1$ (bkg), $y_0 = 1$ (signal)

Gradient Boost

- Gradient Boost is a way to implement "boosting" with arbitrary "loss functions" by approximating "somehow" the gradient of the loss function
- AdaBoost: Exponential loss $\exp(-y_0y(\alpha,x)) \to$ theoretically sensitive to outliers
- Binomial log-likelihood loss $ln(1 + exp(-2y_0y(\alpha, x))) \rightarrow$ more well behaved loss function,

- **Neural Networks are complicated by finding the proper** optimum "weights" for best separation power by "wiggly" functional behaviour of the piecewise defined separating hyperplane
- KNN (multidimensional likelihood) suffers disadvantage that calculating the MVA-output of each test event involves evaluation of ALL training events
- **If Boosted Decision Trees in theory are always weaker than a** perfect Neural Network

- **There are methods to create linear decision boundaries using only measures of** distances (= inner (scalar) products)
	- \rightarrow leads to quadratic optimisation problem
- **The decision boundary in the end is defined only by training events that are** closest to the boundary
- suitable variable transformations into a higher dimensional space may allow separation with linear decision boundaries non linear problems

 \rightarrow Support Vector Machine

hyperplane that separates **S** from **B**

Linear decision boundary

- Best separation: maximum distance (margin) between closest events (*support*) to hyperplane
- Best separation: maximum distance (margin)

between closest events (*support*) to hyperplane

If data non-separable add *misclassification cost*

parameter $C \cdot \sum_{i \leq j} f_i$ to minimisation function parameter *C*·*iⁱ* to minimisation function
- **Solution of largest margin depends only on inner product of support vectors (distances)**
- **quadratic minimisation problem**

hyperplane that separates **S** from **B**

- Linear decision boundary
- Best separation: maximum distance (margin) between closest events (*support*) to hyperplane
- If data non-separable add *misclassification cost* parameter *C*·*iⁱ* to minimisation function
- **largest margin - inner product of support vectors (distances) quadratic minimisation problem**

Non-linear cases:

 Transform variables into higher dimensional feature space where again a linear boundary (hyperplane) can separate the data

- Find hyperplane that best separates signal from background
	- Linear decision boundary
	- Best separation: maximum distance (margin) between closest events (*support*) to hyperplane
	- If data non-separable add *misclassification cost* parameter *C*·*iⁱ* to minimisation function
	- **largest margin - inner product of support vectors (distances) quadratic minimisation problem**
- Non-linear cases:

- non linear variable transformation \rightarrow linear separation in transformed feature space
- no explicit transformation specified \rightarrow Only its "scalar product" $x \cdot x \rightarrow \Phi(x) \cdot \Phi(x)$ needed.
	- certain *Kernel Functions* can be interpreted as scalar products between transformed vectors in the higher dimensional feature space. e.g.: Gaussian, Polynomial, Sigmoid
- Choose Kernel and fit the hyperplane using the linear techniques developed above
	- Kernel size paramter typically needs careful tuning! (Overtraining!)

- **How does this "Kernel" business work?**
- Kernel function == scalar product in "some transformed" variable space
- \rightarrow standard: $\vec{x} \cdot \vec{y} = \sum x_i y_i = |x||y| * cos(\theta)$
	- \rightarrow large if : $\vec{x} \cdot \vec{y}$ are in the same "direction"
	- \rightarrow zero if : $\vec{x} \cdot \vec{y}$ are orthogonal (i.e. point along different axes / dimension)
- \rightarrow e.g. Gauss kernel: $\Phi(\vec{x}) \cdot \Phi(\vec{y}) = K(\vec{x}, \vec{y}) = exp(-\frac{(\vec{x} \vec{y})^2}{2\sigma^2})$ $2\sigma^2$)
	- \rightarrow zero if ponts: \vec{x} and \vec{y} "far apart" in original data space
	- \rightarrow large only in "vicinity" of each other
	- $\rightarrow \sigma$ < distance between training data points:
		- \rightarrow each data point is "lifted" into its "own" dimension
		- \rightarrow full separation of "any" event configuration with decision boundary along coordinate axis
		- \rightarrow well, that would of course be: overtraining

für Kernphysik

SVM: the Kernel size parameter: example: Gaussian Kernels

Kernel size (σ of the Gaussian) choosen too large: \rightarrow not enough "flexibility" in the underlying transformation

colour code: $Red \rightarrow$ large signal probability:

Kernel size (σ of the Gaussian) choosen propperly for the given problem

für Kernphysik

■ Typically correlations are present: C_{ij} =cov[x_i, x_j]=E[x_i x_j]-E[x_i]E[x_j $(i\neq j)$

 \rightarrow pre-processing: choose set of linear transformed input variables for which C_{*ij*} = 0 (i≠j)

Decorrelation

Find variable transformation that diagonalises the covariance matrix

■ Determine *square-root C* \prime of correlation matrix *C*, *i.e.*, *C* = *C* \prime *C* \prime

Example *C'* **by diagonalising** *C***:** $D = S^TCS \Rightarrow C' = S\sqrt{DS'}$

- transformation from original (x) in de-correlated variable space (x') by: $x' = C' - 1x$

Attention: eliminates only linear correlations!!