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Introcluction to Statlstics

CERN Summer Student Lecture Program 2012

Helge Voss

ooand Waienine Lazrning
(in this last lecture)



= Why Statistics
» What is Probability :

» frequentist / Bayesian interpretation

» Hypothesis testing
= error types and Neyman-Pearson Lemma, confidence level « and p-value

= new particle searches — example: Higgs

= Lecture 3
» Parameter estimation
= Maximum Likelihood fit
« y2-fit
» Neyman Confidence belts = Feldman/Cousins ...

» (Monte Carlo Methods (Random numbers/Integration) = see slides)

= Lecture 4

» Machine Learning / Pattern Recognition

Helge Voss Introduction to Statistics and Machine Learning — CERN Summer Student Program 2012 2



= What are Multivariate classification/regression algorithms (MVA)

= Multidimensional Likelihood (kNN : k-Nearest Neighbour)

= Projective Likelihood (naive Bayes)
= Linear Classifier
= Non linear Classifiers
= Neural Networks
= (Support Vector Machines - too bad, no time..)

= Boosted Decision Trees
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Literature:

" T.Hastie, R.Tibshirani, J.Friedman, “The Elements of Statistical Learning”, Springer 2001
" C.M.Bishop, “Pattern Recognition and Machine Learning”, Springer 2006

Software packages for Mulitvariate Data Analysis/Classification
® individual classifier software

" e.g. “JETNET” C.Peterson, T. Rognvaldsson, L.Loennblad
and many other packages

" attempts to provide “all inclusive” packages
" StatPatternRecognition: I.Narsky, arXiv: physics/0507143

" TMVA: Hocker,Speckmayer,Stelzer,Therhaag,von Toerne,Voss, arXiv: physics/0703039

or every ROOT distribution (development moved from SourceForge to ROOT repository)
" WEKA:

" “R”: a huge data analysis library:

Conferences: PHYSTAT, ACAT,...



http://www.hep.caltech.edu/~narsky/spr.html
http://www.hep.caltech.edu/~narsky/spr.html
http://tmva.sf.net/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
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everni Classificatior) =

" Discriminate Signal from Background
how to set the decision boundary to select events of type S ?
we have discriminating variables x;, X, ...
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" Which model/class * and cons ?
Low variance (stable), high bias methaods High variance, small bias methods

" Once decided on a class of boundaries, how to find the “optimal” one ?
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Regression

" estimate a “functional behaviour” from a set of ‘known measurements” ?
" e.g.: “D’-variables that somehow characterize the shower in your calorimeter
—> energy as function of the calorimeter shower parameters .
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= if we had an analytic model (i.e. know the function is a n" -order polynomial) than

we know how to fit this (i.e. Maximum Likelihood Fit)
- but what if we just want to “draw any kind of curve” and parameterize it?

" seems trivial ? > The human brain has very good pattern recognition capabilities!

" what if you have many input variables?



Regression — rmoclel funciionzl osnaviour =« =

" e.g. “D’-variables that somehow characterize the shower in your calorimeter.
" Monte Carlo or testbeam

- data sample with measured cluster observables + known particle energy

= calibration function (energy == surface in D+1 dimensional space)

; A 1-D example ° 2-D example
(x) o ° events generated according: underlying distribution
[ ...
o ® y °
Y e 0o

N
| Vd

X
" better known: (linear) regression = fit a known analytic function

" e.g. the above 2-D example - reasonable function would be: f(x) = ax?+by?+c
" don’t have a reasonable “model” ? - need something more general:

" e.g. piecewise defined splines, kernel estimators, decision trees to approximate f(x)
- NOT in order to “fit a parameter”
—> provide prediction of function value f(x) for new measurements x (where f(x) is not known)
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everni Classificatior) =

" Each event, if Signal or Background, has “D” measured variables.

4 5
log(sIPS_pi)

[TMVA In put Variableslog (FS_Bd)|

" Find a mapping from D-dimensional input-observable ="feature” space
y?x?,'ﬂ SR mos a?)eneral form

: PD to one dimensional output - class | D
- P y =Yy(X); X eP

P “feature X={Xy,-..-,Xp}: input variables
® space”
: " plotting (historamming) % 3.525’;“,("‘;0'“”; —
® the resulting y(x) values: 5 sf E
. 25 3
E
: N: E
E 05 :
o 3 °S 0.2 0.4 0.6 08 1
- ) 4o
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Eveni Classification = =

\ " Each event, if Signal or Background, has “D” measured variables.

" Find a mapping from D-dimensional input/observable/’feature” space

to one dimensional output % signal
=== Backgr

- O, y(S) .%—'Ilpe1 Error

= Type 2 Error

a
=

-
I\\\II‘\\\'I\\‘\II‘\

-
N

log(iPS_pi) - class labels

[TMVA In put Variableslog (FS_Bd)|

#entries ( PDFs,s(Y)

D y(xX): R">R: o

log(FS_Bd) P 0 : = <AA
“feature

space”

" y(x): “test statistic” in D-dimensional space of input variables

" distributions of y(x): PDF¢(y) and PDFg(y)

® used to set the selection cut! > cut: signal
y(X): < = cut: decision boundary

—> efficiency and purity < cut: background

" y(x)=const: surface defining the decision boundary.

(PS) / " overlap of PDF¢(y) and PDFg(y) > separation power , purity
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ol "3‘3-’"'-' J-r"l-' \ N D YW 1 ( s
Clzslilezitlof) « Recression ==
3 Classification:
" Each event, if Signal or Background, has “D” measured variables.

[ MVA distributions |

U

" y(x): RP>R: “test statistic”
_ in D-dimensional space of
log(sIPS_pi) ) )
[TMVA In put Variableslog (FS_Bd)| Input VarlableS

%4 Signal
=== Backgr
—— Type 1 Error

- Type 2 Error

" y(x)=const: surface defining
the decision boundary.

#entries ( PDFSEB(y)

y(x): RP>R: 0= 04 a6 081
— y
® “feature P
[ ) Space” Reqression:
® " Each event has “D” measured variables + one function value
® (e.g. cluster shape variables in the ECAL + particles energy)
: " y(X): RP>R “regression function”

" y(x)=const -> hyperplanes where thd(xy,x;

350

target function is constant 0

Now, y(x) needs to be build such that it B

/ best approximates the target, not such le

log(alPS_IMinus)

that it best separates signal from bkagr.
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Evernt Classificatior e

y(x): R">R: the mapping from the “feature space” (observables) to one output variable

Normalized

_giag;:gm'un'd' T '_f/. PDFg(y). PDF(y): normalised distribution of y=y(x)
- for background and signal events

(i.e. the “function” that describes the shape of the
distribution)

£
o

- [
o M o w
TT T T T T [TTTT]TTT

-
|

with y=y(x) one can also say PDFy(y(X)), PDF(y(X)): :

=
o

=

o 0z o4 oo “Iy(xi_ Probability densities for background and signal

now let's assume we have an unknown event from the example above for which y(x) = 0.2

> PDFg(y(x)) = 1.5 and PDF¢(y(x)) = 0.45

let f5 and fg be the fraction of signal and background events in the sample, then:

fsPDFs (y) is the probability of an event with
j P(C=S]|Y) measured x= {X,....,.Xp} that gives y(X)
fSPDFs (y) + fBPDFB (y) to be of type S|glnal °



evernt Classificaition SN

P(Class=C|x) (or simply P(C|x)) :  probability that the event class is of C, given the
measured observables x={X,....,Xp} 2 Y(X)

Probability density distribution

according to the measurements X
and the given mapping function Prior probability to observe an event of “class C”

l.e. the relative abundance of “signal” versus

\ jbackground” > P =f = %
P(Class=C|y)="V Fi)[)P(C)
/ \y

Posterior probability

Overall probability density to observe the actual
measurement y(x). i.e. P(y)= > P(y|Class)P(Class)

Classes

" |t’s a nice “exercise” to show that this application of Bayes’ Theorem
gives exactly the formula on the previous slide !



J:L'?':.T'El'ﬁr' I Criziraiciersic

I’h. Iy .
(ROC) curve R
. N (0
Signal(H,) /Background(H,) which one of thosey, "J'J,g@ CUry
discrimination: | two blue ones '54’9%, o ooy S5y
1 e rs "ati s
k1 Signal "~ " ] n
2 35 . 3 Sk Le
5 L Background ] _:3 ,hh)
Pl yB) >0, y(S)>1 g S )
25 E—J = w
2 = rll
150 = ~~ | Type-1 error small
N E S Type-2 error large
0.5 [ |
o i : § — Type-1 error large
° o o o8 o8 y(xi 0 Type-2 error small :

0 1-p/ € 1
Signal(H,) /Background(H,) : B1 Esignal

= Type 1 error: reject Hy although true - background contamination
= Significance a: background sel. efficiency 1- a: background rejection

= Type 2 error: accept H, although false = loss of efficiency
= Power: 1- B signal selection efficiency
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VIVA anc Viaenine Learning ==

Finding y(x) : R"™2R
» given a certain type of model class y(x)
» “automatically” using “known” or “previously solved” events
= i.e. learn from known “patterns”
» such that y(x):
= separates well Signal from Background in training data
= (regression: fits well the target function for training events
= ... AND in new events - predictions

—> supervised machine learning

Of course... there’s no magic, we still need to:
» choose the discriminating variables
choose the class of models (linear, non-linear, flexible or less flexible)
tune the “learning parameters” - bias vs. variance trade off
check generalization properties

»
»
»
» consider trade off between statistical and systematic uncertainties



2vernt Classification e

-
S

" Unfortunately, the true probability densities functions are typically unknown:
- Neyman-Pearsons lemma doesn’t really help us directly

" Monte Carlo simulation or in general cases: set of known (already classified) “events”

" 2 different ways: Use these “training” events to:

estimate the functional form of p(x|C): (e.g. the differential cross section folded with the
detector influences) from which the likelihood ratio can be obtained
- e.g. D-dimensional histogram, Kernel densitiy estimators, ...

find a “discrimination function” y(x) and corresponding decision boundary (i.e.
hyperplane® in the “feature space”: y(x) = const) that optimially separates signal from
background

- e.g. Linear Discriminator, Neural Networks, ...

* hyperplane in the strict sense goes through the origin. Here | mean “affine set” to be precise



i~ Nezirest Neignoour =y =

“‘events” distributed according to P(x
" estimate probability density P(x) in D-dimensional space: J )

A
. . . ‘e v ” . ... ° e o h
" The only thing at our disposal is our “training data e e’ o .
e e® % oo o
e o
" Say we want to know P(x) at “this” point “x” ':.. : O o0, O ® o
° e®0 o % °
" One expects to find in a volume V around point “x” I >
[ [ J
N*[P(x)dx events from a dataset with N events * P ee oo *S -
\Y ° o.o .. .0 0.0.. X
" For the chosen a rectangular volume S
- K-events: X1

-

o X=X - L ‘U"Slii:l-"D k(u): is called a Kernel function
K=> h”, with  k(u) = 2 '

n=1

|0, otherwise

" K (from the “training data”) = estimate of average P(x) in the volume V: [P(x)dx = K/N

1 4 1 X — X
® Classification: Determine P(X) = — E —k N

D
PDF¢(x) and PDFg(x) N n=1 h h
— likelihood ratio as classifier!

- Kernel Density estimator of the probability density



S

Densi'i:ny Estirnator

vergriootr ard Lerrjgl

Ll

" estimate probability density P(x) in D-dimensional space: “ever};cs” distributed according to P(x)
. . . . . X2 ° o o h
" The only thing at our disposal is our “training data” *lieee® o o
e o ° °
o o e o o O
" Say we want to know P(x) at “this” point “x” °.°.' . o, "ees 00"
° e®e® o °
" One expects to find in a volume V around point “x” o of .:. y o
[ [ J
N*[P(x)dx events from a dataset with N events ® W ee 00 %0 N\
v . 00 o 000 X
[ ([
" For the chosen a rectangular volume *° _
> K-events: X,

-

o X=X - L ‘U"Slii:l-"D k(u): is called a Kernel function:
K=> "L with k(u) =3 2 ' '

h rectangular-> Parzen-Window

n=1

|0, otherwise

" K (from the “training data”) > estimate of average P(x) in the volume V: JP(x)dx = K/N

\Y

" Regression: If each events with (x;,X,) carries a “function value” f(x;,X,) (e.g. energy of incident
particle) -

N A
%Zk()‘(i —X)f(X") = If()‘()P()?)d)? i.e.: the average function value
i v



S eunoour 2GS EE]

EIES]

—) ‘_)n )I IJ E =) “ ffl Jé\;egsrdlstrlbuted according to P(x)

" estimate probability density P(x) in D-dimensional space:

. . . ‘e v ” X2 ... ° e o h
" The only thing at our disposal is our “training data e e’ o .
e e® % oo o
e o
= Say we want to know P(x) at “this” point “x” ':.. . O o0, O ® o
° e®0 o % °
" One expects to find in a volume V around point “x” I o
[ [ J
N*/P(x)dx events from a dataset with N events ® o e o0 -
v . o.o .. .0 0.0.. X
" For the chosen a rectangular volume S
- K-events: X1

" determine K from the “training data” with signal and
background mixed together

—kNN : k-Nearest Neighbours
relative number events of the various
classes amongst the k-nearest neighbours

y(x )—?S

" Kernel Density Estimator: replace “window” by “smooth”
kernel function = weight events by distance




[ [
r

iKernel Density Estirneator = 2

1 N
P(x) — E Kh (X - X, . a general probability density estimator using kernel K
n=1
" h: “size” of the Kernel > “smoothing parameter” 37— 0005
" chosen size of the “smoothing-parameter” - more 0 s f\_AfUL
important than kernel function 50 !
h =0.07
® h too small: overtraining /\/\
" h too large: not sensitive to features in P(x) OO 0.5 1
5
h=0.2
" which metric for the Kernel (window)? ]
= normalise all variables to same range I 0.5 ]
= include correlations ? (Christopher M.Bishop)

= Mahalanobis Metric: x*x = xV'1x

" a drawback of Kernel density estimators:
Evaluation for any test events involves ALL TRAINING DATA - typically very time consuming



Bellman, R. (1961), Adaptive
@dntrol Processes: A

= C LJ ffﬁ@ O_F D]fﬁ 8.(.]3] OIJ EJJj‘_tyGuidedTour, Rrifceton o

University Press.

Filling a D-dimensional histogram to get a mapping of the PDF is typically unfeasable due
to lack of Monte Carlo events.

Shortcoming of nearest-neighbour strategies: £
2 1
=E
_%0.8:*

" in higher dimensional classification/regression cases ®06F /T
the idea of looking at “training events” in a reasonably ok — D=2
small “vicinity” of the space point to be classified B -D=3 |—
becomes difficult: 02t / b5 |

0‘_ —D=10
consider: total phase space volume V=1P 0oz o0d '0-0\5,;,;m"é61§r'a;ti;g-1

for a cube of a particular fraction of the volume:

edge length=(fraction of volume)“"

" In 10 dimensions: in order to capture 1% of the phase space
- 63% of range in each variable necessary -» that's not “local” anymore..®

—> Therefore we still need to develop all the alternative classification/regression techniques



— X

Multivariate Likelihood (k-Nearest Neighbour)
—> estimate the full D-dimensional joint probability density

: : D product of marginal PDFs
If correlations between variables are weak: >P(x) = [ [P(x)

0 (1-dim “histograms”)
PDFs discriminating variables
\4 :
H PiSIQnal (XI ’kevent )
Likelihood ratio | _ | e{variables}
y(XPDE!kevent )
for event event Z H pC (x. ) Classes: signal,
Ce{classes} \ ie{variables} | v baCkground types
V\ /
" One of the first and still very popular MVA-algorithm in HEP ol e ? ;
® No hard cuts on individual variables, fy/////////é
= allow for some “fuzzyness”: one very signal like variable may s%“
counterweigh another less signal like variable Ho /-
. - . £ >
" optimal method if correlations == 0 (Neyman Pearson Lemma) Xi
" try to “eliminate” correlations - e.qg. linear de-correlation EBEntredices itizzyilogic
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Classitier Training zinc Loss-Funciion ==

= KNN,Likelihood - estimate underlying PDF in D- and 1- dimension
- exploit Neyman Pearson lemma
—> limitations: curse of dimensionality and correlations

" Alternative: provide a set of “basis” functions (or model):

" y(x) =Xwih(x)
" adjust parameters w; - optimally separating hyperplane (surface)
—> called “training

" optimally separating > minimum in expectation value of a Loss function:
L(Verue, Y(x)) penalizes prediction errors in training

E[L] = E[(¥¢rue—Y(x))?]  squared error loss (regression) > minimize
E[L] = E[|Ytrue — y(x)|] misclassification error (classification)

where: regression: Yerue the functional value of training events
classification:  y:-, =1 for signal, =0 (-1) background



Linegar Discrirninzin = =

General: y(x {x,...X Bp iwihi(x)

Linear Discriminant:  Y(X XX ,..,.X BW + WwXx)_

l.e. any linear function of the input variables: - linear decision boundaries

+ .| determine PDF of the test statistic y(x)
R - determine the “weights” w that separate “best”




FISHEESHNNEAADISCHIMITNARUNE t:
D

VXX X BYOWIW WD,

'§ 1.8 3:, Sllglllalll LA I I O '—: . . . ., ) .,
5 1 [ Background | +——> 4 determine the "weights” w that do “best
'6 L _

=z

" Maximise “separation” between the S and B

—> minimise overlap of the distribution y5 and yg
" maximise the distance between the two mean
values of the classes
" minimise the variance within each class

_ 2 vl = Wy " w .
S maximise  J (W):(E(yB) E(ys))” _ wBw _ "inbetween" variance

038 + 055 w'Ww "within" variance

V J~W=E O:W%@B " the Fisher coefficients

note: these quantities can be calculated from the training data




Neaural Networks =4

for “arbitrary” non-linear decision boundaries = y(x) non-linear function

" Think of h,(x) as a set of “basis” functions

M
y()?):Z(W h()_{)) " If h(x) is sufficiently general (i.e. non linear), a linear
1l

combination of “enough” basis function should allow to
describe any possible discriminating function y(x)

there are also mathematical proves for previous statement.

hi(x)
output 1

Imagine you ch?se-de-t-lvéteuewi-nq:
\ - A(X):

M D ; :
y(x):z WOiA(wi)-l-Zwi -XjJ / 1+e™”
i F1 / the sigmoid function

0 activation

y(x) =
a linear combination of
non linear function(s) of
linear combination(s) of
the input data

Ready is the Neural Network
Now we “only” need to find the appropriate “weights” w



’ - - ~ D 23N ;) | '. / [ D
5?! VCV%\ ht?j et’gﬁﬁoﬁige%g’sfg%rm]ula\a/s %ral Network:

input layer hidden layer ouput layer

But before talkmg ab‘out

—~— W A M D
11 _—

(@@ O owpr YOIZD WoA| Wt D W, X
D.var L . E @
discriminating | ~/ . A putpul “ Activation” function
input variables < - I g oo siomoid:
as input ST S ﬁ & 518 '

-1

+ 1 offset A(X) = (1+ e_x)

©/ _
J - or tanh

0  activation

\ @ or ...

" Nodes in hidden layer represent the “activation functions” whose arguments are linear
combinations of input variables - non-linear response to the input

" The output is a linear combination of the output of the activation functions at the internal nodes
" Input to the layers from preceding nodes only - feed forward network (no backward loops)
" |t is straightforward to extend this to “several” input layers
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I NEtWOrs: \
NMultilayer Perceoiron VILP

try to “interpret” the formula as a Neural Network:

input layer hidden layer ouput layer
N A M D
11 —_
(O ® + O o YD WoA| Wt W, X
discriminatin /v @
: ating | 7 BitauL “ Activation” function
input variables < . I 13 - 1.
. P /A e.g. sigmoid:
as iput ~
+ 1 offset @ 05 - A(X) = (1+ e )_1
) Jo __. | ortanh
\ @ activation or ...
nodes->neurons __, Neural network: try to simulate reactions of
links(weights)=>synapses a brain to certain stimulus (input data)
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Neural Networi Trainirng =

idea: using the “training events” adjust the weights such, that
" y(x)->0 for background events
" y(x)->1 for signal events

i.e. use usual “sum of squares” or

how do we adjust ? / misclassification error
" minimize Loss function:

events

L(w)= >, (y(x)-¥(C))*  where Y(C)={:)fgrg:§fcnkjr

predicted true
event type event type

= y(x): very “wiggly” function - many local minima.
—one global overall fit not efficient/reliable
—> back propagation (learn from experience, gradually adjust your resonse)

—> online learning (update event by event)

—2 batch learning (update after seeing the whole sample)




giWoric reiriric N\

eLrel
02CK=0rooagaiior)

" start with random weights
" adjust weights in each step - steepest descend of the “Loss”- function L

W™ =w"+7-VuL(W) =7 learning rate L(w) = (y(x.) — y(C))?

M D
" for weights connected to output nodes Y(X):Z WOiA[WiO +Z W; - X ]
[ i=

oL

oW, :(Y(X) - Y(C))A[Wio"'ZD:Wij "X }

=1
" for weights not connected to output nodes
.. a bit more complicated formula

" note: all these gradients are easily calculated from the training event

" training Is repeated n-times over the whole training data sample. how often ??

éearly stopping: traditional way to avoid overtraining
—>there are also other “regularisation”



"training: n-times over all training data how often ??
" it seems intuitive that this boundary will give better results in another

ée.g. stop training before you learn
statistical fluctuations in the data

éverify on independent “test” sample

—>possible overtraining is concern for test sample
every “tunable parameter” o of
classifiers: Smoothing parameter,

n-nodes...

classificaion error

5. training sample

04
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S00sigc] Decision Trees

Decision Tree: Sequential application of cuts splits
the data into nodes, where the final nodes (leafs)
classify an event as signal or background

Xi < cl

»




BSoosiac Dacision Traes

Decision Tree: Sequential application of cuts splits
the data into nodes, where the final nodes (leafs) .

classify an event as signal or background node
" Each branch - one standard “cut” sequence
" easy to interpret, visualised
" independent of monotonous variable .

transformations, immune against outliers

. : [J>C2 XJ<C2J {x1>c3 XJ<C3J
" weak variables are ignored (and don’t e

; N ¥
(much) deteriorate performance) o @
" Disadvatage - very sensitive to statistical

fluctuations in training data

® Boosted Decision Trees (1996): @

combine a whole forest of Decision Trees,
derived from the same sample, e.g. using

different event weights. - became popular in HEP since
MiniBooNE, B.Roe et.a., NIM 543(2005)

" overcomes the stability problem

" increases performance
Introduction to Statistics and Machine Learning — CERN Summer Student Program 2012 33
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classifier
C(O)(X)
1 re-weight
Weighted classifier
Sample CO(x)
re-weight
Weighted classifier
Sample CO(x)
re-weight 3 Neiassifier o
Weighted classifier y(x) — Z Wi (X)
Sample CO(x)
1 re-weight
=
Weighted classifier
Sample CM)(x)

Introduction to Statistics and Machine Learning — CERN Summer Student Program 2012
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Aczoiive Boosiineg (AcdaBoost) =

classifier = AdaBoost re-weights events
CO(x) misclassified by previous classifier by:
1 re-weight 11
Weighted classifier e \vith -
Sample CO(x) -
e -~ misclassified events
Weighted classifier o =
Sample C(x) all events
1 re-weight
Weighted classifier " AdaBoost weights the classifiers also
Sample C®)(x) using the error rate of the individual
1 re-weight classifier according to:
Neiassifier 1 f (1) "
— —emr |
v y(x) = Z log £0) (X)
|
Weighted classifier e
Sample CM)(x)
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AclaBoosi: £

The example: (somewhat artificial..
 Data file with three “bumps”

» Weak classifier (i.e. one single simple “cut”

Backgrcund

Normalised

1.5;— b)

a)Var0 > 0.5 > ¢
or
b) Var0 < -0.5 > ¢

sig

a5 signal ] T

0.5 1 1.5
varQ

LID-flow (S,B): (0.0, 0.0)% J (0.0, 0.0)%

sirnole cdernonsir

.but nice for demonstration) :

a

tlor

< decision tree stumps )

var(i) > x  var(i) <= X

sig=06% €y = 0% misclassified events in total 16.5%

=33% €, = 0% misclassified events in total 33%

the training of a single decision tree stump will find “cut a)”

A e
——

et



AdaBoosii A simole dermonsiraiion ==
The first “tree”, choosing cut a) will give an error fraction: err = 0.165

=» before building the next “tree”. weight wrong classified training events by ( 1-err/err) ) =5

=» the next “tree” sees essentially the following data sample:

B osfEdSEna T g 25[Slgnal T TS _
ﬁ Background E re_Welght E Backg ound 1 .- and hence WI”
E 2f . ] § °f ' 1chose: “cutb)”:
150 'g 15} ] Var0 < -0.5
| % -_—
n.sf - % “-52
nE M //!!‘.E.... [l I]:
15 -1 05 0 05 1 15 -
varl
k] q | sighdal” ~ " | -
E 100 Background _:
The combined classifier: Treel + Tree2 = sof =
the (weighted) average of the response to oo [ 3%
a test event from both trees is able to i <
g 40 1=
separate signal from background as : z
good as one would expect from the most ~ *° [ T%
powerful classifier ol v v v vl S
-1 -0.8 -0.6 -0.4 -0.2 0

BDT response
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Beajeing anc Rancornisecd Trees ==

" Bagging:
" combine trees grown from “bootstrap” samples
(i.e re-sample training data with replacement)

" Randomised Trees: (Random Forest: trademark L.Breiman, A.Cutler)
" combine trees grown with:
" random bootstrap (or subsets) of the training data only

" consider at each node only a random subsets of variables for
the split

" NO Pruning (despite possibly larger trees than AdaBoost) !

" or any “combination” of Bagging/Randomising/Boosting

" These combined classifiers work surprisingly well, are very
stable and almost perfect “out of the box™ classifiers



General Acdvice for (MVA) Analyses =«=

There is no magic in MVA-Methods:
» no need to be too afraid of “black boxes” - they are not sooo hard to understand
» you typically still need to make careful tuning and do some “hard work”™
» no “artificial intelligence” ... just “fitting decision boundaries” in a given model

The most important thing at the start is finding good observables
» good separation power between S and B
» little correlations amongst each other
» no correlation with the parameters you try to measure in your signal sample!
Think also about possible combination of variables

» this may allow you to eliminate correlations
= rem.: you are MUCH more intelligent than what the algorithm will do

Apply pure preselection cuts and let the MVA only do the difficult part.

“Sharp features should be avoided” - numerical problems, loss of
information when binning is applied

» simple variable transformations (i.e. log(variable) ) can often smooth out these areas
and allow signal and background differences to appear in a clearer way

Treat regions in the detector that have different features “independent”
» can introduce correlations where otherwise the variables would be uncorrelated!



MIVA and Sysieraiic Unceriainiies =« =

= Multivariate Classifiers THEMSELVES don’t have systematic uncertainties
- even if trained on a “phantasy Monte Carlo sample”

= there are only “bad” and “good” performing classifiers !
* OVERTRAINING is NOT a systematic uncertainty !!
= difference between two classifiers resulting from two different training

runs DO NOT CAUSE SYSTEMATIC ERRORS
= same as with “well” and “badly” tuned classical cuts
= MVA classifiers: - only select a region(s) in observable space

= Efficiency estimate (Monte Carlo) - statistical/systematic uncertainty
= involves “estimating” (uncertainties in ) distribution of PDF,

= statistical “fluctuations” = re-sampling (Bootstrap)
= “smear/shift/change” input distributions and determine PDFE,

Ys(B)
— estimate systematic error/uncertainty on efficiencies

YS(B)

= Only involves “test” sample... systematic uncertainties have nothing to do
with the training !!
40
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VIVA and Sysiermaiic Unceriai;

= minimize “systematic” uncertainties

- “classical cuts” : do not cut near steep edges, or in regions of large sys.
uncertainty
- hard to “translate”: try to:

artificially degrade discriminative power (shifting/smearing) of systematically
“uncertain” observables IN THE TRAINING

— Don’t be afraid of correlations!
typically “kinematically generated” - easily modeled correctly
“classical cuts” are also affected by “wrongly modeled correlations”
MVA method let’s you spot this
-> look at “projections” of input variables
> + the combined MVA test statistic “y(x)” !



SLUnEry =

= Multivariate Classifiers (Regressors) - 1 dimensional test statistic
y(x) and y(x)>c defines decision boundary

= Mulit-dimensional (and projective) Likelihood

» estimate the PDF and exploint Neyman-Pearsons Lemma: best test
statistic is the Likelihood ratio

= Other classifiers “fit” a decision boundary “model”
» Linear: Linear Classifier (e.g. Fisher Discriminant)
» Non-Linear
= Neural Network
= Boosted Decision Trees
= (Support Vector Machines) - very nice but hard to explain in 5min...
= No “magic” or “intelligence” ... just fitting !
= Once one understands what “they are” you know
» systematic uncertainties don’t lie in the training !!
» estimate them similar as you’d do in classical cuts
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" training sample at the root node

" split training sample into two
®yariable and cut with best separation gain

" continue splitting until: N Signal

" minimal #events per node )
" maximum number of nodes @ 1
" maximum depth specified

L ..« - Background

0.5
" (a split doesn’t give a minimum separation gain)
— not a good idea - see “chessboard” 0
" Decision trees: grow large tree and then
‘prune, -0.5
" Boosted Decision tree: early stopping A

IIII|IIII|1'1III|IIII|_IIII|IIII|II

P A L s
I|IIII|IIII|IIII|IIII|‘IIII|IIII|III

1.5 4 -05 0 0.5 1 1.5
var1i

" leaf-nodes classify S,B according to the
majority of events or give a S/B probability
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o - - -frjmrm-r oosting” NN
~ (Frizclman 1998 = ll)

.. For the two-class problem, boosting can be viewed as an approximation to additive modeling on the logistic scale
using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit
nearly identical results to boosting. Direct multi-class generalizations based on multinomial likelihood are derived that
exhibit performance comparable to other recently proposed multi-class ....

Abstract:

m Boosted Decision Trees: two different interpretations

» give events that are “difficult to categorize” more weight and average afterwords the
results of all classifiers that were obtained with different weights

®» see each Tree as a “basis function” of a possible classifier >
» boosting or bagging is just a mean to generate a set of “basis funciton”
* linear combination of basis functions gives final classifier or: final classifier is an

expansion in the basis functions. .
y(a’ X) — ZO‘I (X)

tree

» every “boosting” algorithm can be interpreted as optimising in a “greedy stagewise”
manner (i.e. from the current point in the optimisation —e.g.building of the decision tree
forest- one chooses the parameters for the next boost step (weights) such that one
moves a long the steepest gradient of the loss function)

« AdaBoost: “exponential loss function” = exp( -y,y(a,x)) where y,=-1 (bkg), y,=1 (signal)
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Graclignt Boost =4 =

" Gradient Boost is a way to implement “boosting” with arbitrary “loss functions” by
approximating “somehow” the gradient of the loss function

" AdaBoost: Exponential loss exp( -yyy(a,x)) = theoretically sensitive to outliers

" Binomial log-likelihood loss In(1 + exp( -2y,y(a,x)) -=> more well behaved loss function,



Suooori Vecior Viacnines ==

= Neural Networks are complicated by finding the proper
optimum “weights” for best separation power by “wiggly”
functional behaviour of the piecewise defined separating
hyperplane

= KNN (multidimensional likelihood) suffers disadvantage that
calculating the MVVA-output of each test event involves
evaluation of ALL training events

= [f Boosted Decision Trees in theory are always weaker than a
perfect Neural Network



Suooort Vecior Viacrine -

= There are methods to create linear decision boundaries using only measures of
distances (= inner (scalar) products)

= - leads to quadratic optimisation problem

= The decision boundary in the end is defined only by training events that are
closest to the boundary

= suitable variable transformations into a higher dimensional space may allow
separation with linear decision boundaries non linear problems

= —>Support Vector Machine



Sugoori Vet

hyperplane that separates S from B Xs A

" Linear decision boundary

" Best separation: maximum distance (margin)
between closest events (support) to hyperplane

" |f data non-separable add misclassification cost
parameter C-%.& to minimisation function

Non-separable data

" Solution of largest margin depends only on
inner product of support vectors (distances)

-> quadratic minimisation problem

Introduction to Statistics and Machine Learning — CERN Summer Student Program 2012
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Suooort Vecior Viac

hyperplane that separates S from B

Linear decision boundary

Best separation: maximum distance (margin)
between closest events (support) to hyperplane
If data non-separable add misclassification cost
parameter C-%.& to minimisation function

" largest margin - inner product of support vectors

(distances) = quadratic minimisation problem

Non-linear cases;

Transform variables into higher dimensional feature space where again a linear

boundary (hyperplane) can separate the data

-~ ~ el
c ] rfries -
i
<
@)
Q
@)
©
<
o
)
O
c
g ‘d)(Xl’Xﬁ),
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cior Vlzcnines =y =

Sugoort Vect

_____________________

Find hyperplane that best separates signal
from background
" Linear decision boundary

\

HepRIaflgdata

" Best separation: maximum distance (margin)
between closest events (support) to hyperplane

" |f data non-separable add misclassification cost
parameter C-%.& to minimisation function

" largest margin - inner product of support vectors
(distances) = quadratic minimisation problem

Nep

Non-linear cases;

" non linear variable transformation - linear separation in transformed feature space
" no explicit transformation specified = Only its “scalar product” x-x 2 ®(x)-®(x) needed.

" certain Kernel Functions can be interpreted as scalar products between transformed
vectors in the higher dimensional feature space. e.g.: Gaussian, Polynomial, Sigmoid

" Choose Kernel and fit the hyperplane using the linear techniques developed above

» Kernel size paramter typically needs careful tuning! (Overtraining!)



Suooori Vecior Viacnines =y =

= How does this “Kernel” business work?
= Kernel function == scalar product in “some transformed” variable space

-

- standard: x-y =Y x;y; = |x||y| * cos(6)
- large if :

-

X -y are in the same “direction”
- zeroif: x-y are orthogonal (i.e. point along different axes / dimension)

> e.g. Gauss kernel:  ®(%) - ®(y) = K(X,y) = exp(— (f_i)z)

202

- zero if ponts: x and y “far apart” in original data space

—> large only in “vicinity” of each other

= o < distance between training data points:
— each data point is “lifted” into its “own” dimension

—> full separation of “any” event configuration with decision boundary along
coordinate axis

—> well, that would of course be: overtraining



vari

SVM: the Kernel size parameter:
example: Gaussian Kernels

varQ
= Kernel size (o of the Gaussian) choosen " Kernel size (o of the Gaussian) choosen
too large: > not enough “flexibility” in the propperly for the given problem
underlying transformation
| Signal and background distributions weighted by SVM_Gauss output | | Signal and background distributions weighted by SVM_Gauss output
N 0 R A N R R E N =
S S .. e 2r
. BOSO®
i _3
colour code: : O
. Un 7
Red - large signal - O
probability: :
-2 li[ ) _
E‘II\IlII\IlIII>II|/II\Illl\lll-l.\ll:
-3 -2 -1 0 1 2 3
vari vari
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Whnat if there sire correlaiions?

- ypically correlations are present: C;=cov[ X; , X; [=E[ x; x; I=E[ X; JE[ X; ]70 (i#))

[ TMVA Input Variable: vari+var2 | [ TMVA Input Variable: vari-var2 |
?, 0_3}‘Y T T T T T T T ?, U'ED[ISIi‘gIHéiI‘I‘I'r IIITIIIIIIIVIIIIIGE
= 025: 12 & [z Background £
E 025 1 E o04f S E | Correlation Matrix (signal) |
2 b 1z 2 [ i)
0.2 ] g I 1€ linear correlation coefficients in %
. 12 03[ 1z 100
015} 1S 12 30
: s o2 1s o
01p 1& C 1& 60
i 1 0.1} ¢
0.05fF 132 b 13 g0
[ 18 b r ] 3 ar3 B
of 18 0 e el T 20
4 -3 -2 A1 0 1 2 3 0
vari+var2 vari-var2
1-var2 20
[ TMVA Input Variable: var3 | [ TMVA Input Variable: var4 |
-40
B o0asf 1 B o4F ]
] E 3 o E i
= o0af 4= T o03sF 12 =
E E Eg E E is 14+var2
5 035 15 § o3f ] bt
Z o0s3f e =2 : e
i £ 0.25F 1 ” ” » -100
- = o 1 7. ary. arz arg
025¢ ia 0.2f 13 o2 e
0.2F =) E is
E ie 0.15F ie
0.15F EF o E ja
E 9 A je
|:|.1E 13 s 1z
0.05F 32 0.05f 12
E Py 19 E [l il el
0 b b iyl i a D 0 ri e s A LA A A U ad>d
vard

— pre-processing: choose set of linear transformed input variables for which C;; = 0 (i#))

Helge Voss

Introduction to Statistics and Machine Learning — CERN Summer Student Program 2012

54



Deacorrelation o %

* Find variable transformation that diagonalises the covariance matrix
" Determine square-root C ' of correlation matrix C, i.e., C=C'C"'

=compute C ' by diagonalising C: D=S'CS = C’'=S.DS’

" transformation from original (x) in de-correlated variable space (x’) by: x' = C '—1x

Gompanen! Transiormied TNVA Input Variaties: vart vur2

0.5 T:I'Sign'a\ T T T T

Background
i

04F

Normalised 7]
Nermalised [7]

031

0.2

0.1

JAR1 FERE FTRE FETEFRTE T FUT1 FERU FPRU FEPa Fr v iy
U/O-tlow (S,B): (0.0, 0.0)% / (0.1, 0.0)%
UiO-Tlow (S,B): (0.0, 0.0)% / (0.3, 0.0)%

g
Ahbbbf it oo o oo | D
T kL 3

0 w2 I A

Normalised M
Normalised
?
- ]

“paoao [§
Hhbn o n 2
T T T T |

F]
il dodaiolo L o5 63 B D
5 g

Ur0-flaw (8,B): (0.0, 0.0)%/ (0.8, 0.8)%
o
(=Y
an

U/O-flow (S,B): (0.0, 0.0)%/ (0.8, 0.8)%

U: Pl <iB
-2 -B5 -2 -0:5 00 0.51 1 21.5 32

Attention: eliminates only linear correlations!!
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