
Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012  1 

Introduction to Statistics 

CERN Summer Student Lecture Program  2012  

 … and Machine Learning 
(in this last lecture)  

Helge Voss 



Outline 

Why Statistics 

What is Probability :   

frequentist / Bayesian  interpretation 

Hypothesis testing 

 error types and Neyman-Pearson Lemma, confidence level 𝛼  and p-value 

 new particle searches – example: Higgs  

 Lecture 3 

Parameter estimation 

 Maximum Likelihood fit 

 𝜒2-fit 

Neyman Confidence belts  Feldman/Cousins …  

(Monte Carlo Methods (Random numbers/Integration)  see slides) 

 Lecture 4 

Machine Learning / Pattern Recognition 
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Outline 
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What are Multivariate  classification/regression  algorithms  (MVA) 

Multidimensional Likelihood  (kNN : k-Nearest Neighbour) 

 Projective Likelihood (naïve Bayes) 

 Linear Classifier 

 Non linear Classifiers 

 Neural Networks 

 (Support Vector Machines   too bad, no time..) 

 Boosted Decision Trees 
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 MVA-Literature /Software 

Packages... a biased selection 
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Software packages for Mulitvariate Data Analysis/Classification 

 individual classifier software  

  e.g.  “JETNET” C.Peterson, T. Rognvaldsson, L.Loennblad 

and many other packages 

  

 attempts to provide “all inclusive” packages 

 StatPatternRecognition: I.Narsky, arXiv: physics/0507143 

 http://www.hep.caltech.edu/~narsky/spr.html  

 TMVA: Höcker,Speckmayer,Stelzer,Therhaag,von Toerne,Voss, arXiv: physics/0703039 

http://tmva.sf.net or every ROOT distribution (development moved from SourceForge to ROOT repository) 

 WEKA: http://www.cs.waikato.ac.nz/ml/weka/     

 “R”: a huge data analysis library: http://www.r-project.org/  

 

Literature: 
 T.Hastie, R.Tibshirani, J.Friedman, “The Elements of Statistical Learning”, Springer 2001 

 C.M.Bishop, “Pattern Recognition and Machine Learning”, Springer 2006 

 

Conferences:  PHYSTAT, ACAT,… 
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Event Classification 
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A linear boundary?  A nonlinear one? Rectangular cuts? 

S 

B 

x1 

x2 S 

B 

x1 

x2 S 

B 

x1 

x2 

 Which model/class  ?  Pro and cons ? 

 Once decided on a class of boundaries, how to find the “optimal” one ?  

 Discriminate  Signal  from  Background 

 how to set the decision boundary to select events of type S ? 

 we have discriminating variables x1, x2, …   

 

Low variance (stable), high bias methods High variance, small bias methods 
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Regression 
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linear?  

x 

f(x) 

x 

f(x) 

x 

f(x) 

 constant ?  non - linear?  

estimate a “functional behaviour” from a set of ‘known measurements” ? 

 e.g. :  “D”-variables that somehow characterize the shower in your calorimeter  

  energy as function of the calorimeter shower parameters . 

 seems trivial ?     

what if you have many input variables? 

Cluster Size 

E
n

e
rg

y
 

 seems trivial ?      The human brain has very good pattern recognition capabilities! 

 if we had an analytic model (i.e. know the function is a nth -order polynomial) than 

we know how to fit this (i.e. Maximum Likelihood Fit)  

 but what if we just want to “draw any kind of curve” and parameterize it?  
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Regression  model functional behaviour 
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x 

f(x) 

 e.g.  “D”-variables that somehow characterize the shower in your calorimeter.  

 Monte Carlo or testbeam  

  data sample with measured cluster observables    +  known particle energy 

 = calibration function   (energy == surface in D+1 dimensional space) 

1-D example 2-D example 

 better known:  (linear) regression  fit a known analytic function  

 e.g. the above 2-D example   reasonable function would be:  f(x) =  ax2+by2+c  

 don’t have a reasonable “model”  ?    need something more general:  

 e.g. piecewise defined splines, kernel estimators, decision trees to approximate  f(x)  

x 
y 

f(x,y) 

events generated according: underlying distribution  

 NOT in order to “fit a parameter”  

 provide prediction of function value f(x) for new measurements x  (where f(x) is not known) 
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Event Classification 
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 Each event, if Signal or Background, has “D” measured variables.  

D 

“feature 

 space” 

y(x) 

 

most general form 

y  = y(x);  x D  

x={x1,….,xD}: input variables 

y(x): RD
R: 

 plotting (historamming) 

the resulting y(x) values: 

 Find a mapping from D-dimensional input-observable =”feature” space 

   to one dimensional output   class label  
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Event Classification 

9 Helge Voss 

 Each event, if Signal or Background, has “D” measured variables.  

D 

“feature 

 space” 

y(B)  0, y(S)  1 

 

 y(x):  “test statistic” in D-dimensional space of input variables 

y(x): Rn
R: 

 distributions of y(x):  PDFS(y) and PDFB(y) 

 overlap of PDFS(y) and PDFB(y)  separation power , purity  

 used to set the selection cut!  

 Find a mapping from D-dimensional input/observable/”feature” space 

 y(x)=const: surface defining the decision boundary. 

efficiency and purity 

to one dimensional output   

 class labels  

 

> cut: signal 

= cut: decision boundary 

< cut: background 

 

y(x): 
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Classification ↔ Regression 
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Classification: 

 Each event, if Signal or Background, has “D” measured variables.  

D 

“feature 

 space” 

 

 y(x): RD
R:  “test statistic” 

in D-dimensional space of 

input variables 

 y(x)=const: surface defining 

the decision boundary. 

y(x): RD
R: 

Regression: 

 Each event  has “D” measured variables + one function value  

 (e.g.  cluster shape variables in the ECAL + particles energy) 

 y(x): RD
R   “regression function” 

 y(x)=const    hyperplanes where the 

 target function is constant 

Now, y(x) needs to be build such that it 

best approximates the target, not such  

that it best separates signal from bkgr. 
X1 

X2  

f(x1,x2) 
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Classification and Regression 

Visualisation in 2D 
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Test Statistic y(x): 

 

 function of the the input 

variables : 

 

 Classification:  

     y(x)=const  decision   

boundaries ! 

 

 Regression: 

     y(x) = your target function 



Event Classification 
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S S

S S B B

f PDF (y(x))
P(C S | y(x))

f PDF (y(x)) f PDF (y(x))
 



y(x) 

PDFB(y). PDFS(y):  normalised distribution of y=y(x) 

for background and signal events 

(i.e. the “function” that describes the shape of the 

distribution) 

with y=y(x) one can also say PDFB(y(x)), PDFS(y(x)): : 

 

Probability densities for background and signal 

now let’s assume we have an unknown event from the example above for which  y(x) = 0.2 

 

is the probability of an event with 

measured x={x1,….,xD} that gives y(x) 

to be of type signal 

y(x): Rn
R:  the mapping from the “feature space” (observables) to one output variable  

let fS and fB be the fraction of signal and background events in the sample, then: 

 PDFB(y(x)) = 1.5   and PDFS(y(x)) = 0.45 

 

1.5 

 0.45 

S S

S S B B

f PDF (y)
P(C S | y)

f PDF (y) f PDF (y)
 


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Event Classification 
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P(Class=C|x) (or simply P(C|x)) :   probability that the event class is of C, given the 

         measured observables x={x1,….,xD}  y(x)   

P(y | C) P(C)
P(Class = C| y) =

P(y)

Prior probability to observe an event of “class C” 

i.e. the relative abundance of “signal” versus 

“background”   P C = 𝑓𝐶 =
𝑛𝐶

𝑛𝑡𝑜𝑡
 

Overall probability density to observe the actual 

measurement y(x). i.e.  
Classes

P(y) = P(y | Class)P(Class)

Probability density distribution 

according to the measurements x 

and the given mapping function 

Posterior probability 
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 It’s a nice “exercise” to show that this application of Bayes’ Theorem 

gives exactly the formula on the previous slide ! 
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y(x) 

y(B)  0, y(S)  1 

Signal(H1) /Background(H0)  

discrimination:  

0 1 

1 

0 

1
−

𝛼
 /

1
- 

e b
a
c
k
g
r.

 

 𝟏 − 𝜷 / esignal  

which one of those 

two blue ones is the better?? 

y’(x) 

y’’(x) 

Type-1 error small 

Type-2 error large 

Type-1 error large  

Type-2 error small 

Signal(H1) /Background(H0) : 

 

 Type 1 error:  reject H0 although true  background contamination 

  Significance α: background sel. efficiency  1- a: background rejection 

 

 Type 2 error:  accept H0  although false  loss of efficiency 

  Power: 1- β signal selection efficiency 

Receiver Operation Charactersic 

(ROC) curve  



MVA and Machine Learning 

15 Helge Voss 

 

 Finding y(x) : Rn
R  

given a certain type of model class y(x)   

“automatically”  using “known” or “previously solved” events 

 i.e.  learn from known “patterns”  

such that  y(x): 

 separates well Signal from Background in training data 

  (regression: fits well the target function for  training events 

 … AND in new events  predictions 

 

  supervised machine learning 

 

 Of course… there’s no magic, we still need to: 

choose the discriminating variables 

choose the class of models (linear, non-linear, flexible or less flexible) 

tune the “learning parameters”  bias vs. variance trade off 

check generalization properties 

consider trade off between statistical and systematic uncertainties 
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Event Classification 
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Unfortunately, the true probability densities functions are typically unknown: 

 Neyman-Pearsons lemma doesn’t really help us directly 

 

* hyperplane in the strict sense goes through the origin. Here I mean “affine set” to be precise 

 

Monte Carlo simulation or in general cases: set of known (already classified) “events” 

 

2 different ways: Use these “training” events to: 

 

 estimate the functional form of p(x|C):  (e.g. the differential cross section folded with the 

detector influences) from which the likelihood ratio can be obtained 

 e.g. D-dimensional histogram, Kernel densitiy estimators, … 

 

 find a “discrimination function” y(x)  and corresponding  decision boundary (i.e. 

hyperplane* in the “feature space”: y(x) = const) that optimially separates signal from 

background   

 e.g. Linear Discriminator, Neural Networks, … 
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K- Nearest Neighbour 
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 estimate probability density P(x) in  D-dimensional space:  
 

 The only thing at our disposal is our “training data” 

 

x1 

x2 

“events” distributed according to P(x) 

“x” 

1

1
1, , 1...x x

K , with (u) 2

0, otherwise

N
in

n

u i D
k k

h


 -  

   
  



 k(u):  is called a Kernel function 

 For the chosen a rectangular volume  

h 

  Say we want to know P(x) at “this” point “x” 

 One expects to find in a volume V around point “x”  

N*∫P(x)dx  events from a dataset with N events 

 
V 

 K  (from the “training data”)    estimate of average  P(x) in the volume V:   ∫P(x)dx  = K/N  

  V 

 Classification:  Determine  

 PDFS(x) and PDFB(x)  

likelihood ratio as classifier!  

  K-events: 

 

 

 

 

 Kernel Density estimator of the probability density 

1

x x1 1
(x)



- 
  

 


N
n

D
n

P k
N h h
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Nearest Neighbour and Kernel 

Density Estimator 
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 Regression:  If each events with (x1,x2) carries a “function value” f(x1,x2) (e.g. energy of incident 

particle)     

 

 

i.e.: the average function value 

x1 

x2 

“events” distributed according to P(x) 

“x” 

1

1
1, , 1...x x

K , with (u) 2

0, otherwise

N
in

n

u i D
k k

h


 -  

   
  



 k(u):  is called a Kernel function: 

rectangular Parzen-Window 

h 

N
i i

i V

1 ˆk(x x)f(x ) f(x)P(x)dx
N

-  

 K  (from the “training data”)    estimate of average  P(x) in the volume V:   ∫P(x)dx  = K/N  

  V 

 estimate probability density P(x) in  D-dimensional space:  
 

 The only thing at our disposal is our “training data” 

 

 For the chosen a rectangular volume  

  Say we want to know P(x) at “this” point “x” 

 One expects to find in a volume V around point “x”  

N*∫P(x)dx  events from a dataset with N events 

 
V 

  K-events: 
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Nearest Neighbour and Kernel 

Density Estimator 
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x1 

x2 

“x” 

h 

 determine K from the “training data” with signal and 

background mixed together 

  

x1 

x2 

kNN  : k-Nearest Neighbours 

 relative number events of the various 

classes amongst the k-nearest neighbours 

Sn
y(x)

K


“events” distributed according to P(x) 
 estimate probability density P(x) in  D-dimensional space:  
 

 The only thing at our disposal is our “training data” 

 

 For the chosen a rectangular volume  

  Say we want to know P(x) at “this” point “x” 

 One expects to find in a volume V around point “x”  

N*∫P(x)dx  events from a dataset with N events 

 
V 

  K-events: 
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 Kernel Density Estimator: replace “window” by “smooth” 

kernel function  weight events by distance 

  



Kernel Density Estimator 
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 h: “size” of the Kernel     “smoothing parameter” 

 

 chosen size of the “smoothing-parameter”  more 

important than kernel function 

(Christopher M.Bishop) 

 h too small:  overtraining 

 h too large:  not sensitive to features in P(x)  

 a drawback of Kernel density estimators: 

Evaluation for any test events involves ALL TRAINING DATA  typically very time consuming 

 

1

1
nP( ) ( )



 x x - x
N

h

n

K
N

:  a general probability density estimator using kernel K 

 which metric for the Kernel (window)? 

 normalise all variables to same range 

 include correlations ?  

 Mahalanobis Metric:   x*x  xV-1x 
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“Curse of Dimensionality” 

21 Helge Voss 

Bellman, R. (1961), Adaptive 

Control Processes: A 

Guided Tour, Princeton 

University Press.  

Shortcoming of nearest-neighbour strategies: 

  in higher dimensional classification/regression cases 

the idea of looking at “training events” in a reasonably 

small “vicinity” of the space point to be classified 

becomes difficult: 

1/edgelength=(fraction of volume) D

consider: total phase space volume V=1D 

               for a cube of a particular fraction of the volume: 

 In 10 dimensions: in order to capture 1% of the phase space 

 63% of range in each variable necessary    that’s not “local” anymore..  

 

We all know:  

 Filling a D-dimensional histogram to get a mapping of the PDF is typically unfeasable due 

to lack of Monte Carlo events. 

Therefore we still need to develop all the alternative classification/regression techniques 
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Naïve Bayesian Classifier  

(projective Likelihood Classifier) 
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Multivariate Likelihood (k-Nearest Neighbour)  

  estimate the full D-dimensional joint probability density 

If correlations between variables are weak:  
D

i

i 0

P( ) P( )


 x x

 

  

event

event

event

variables

vari

signa

a

,

PDE

b s

,

l

k

,

l

e

P (x )

( )

P (x )






 
  
 



 

i

C

C

i

i

i i

cla s i

k

k

sse

y x

discriminating variables 

Classes: signal, 

background types 

Likelihood ratio 

for event event 

PDFs 

One of the first and still very popular MVA-algorithm in HEP 

 No hard cuts  on individual variables,  

 allow for some “fuzzyness”: one very signal like variable may 

counterweigh another less signal like variable 

optimal method if correlations == 0  (Neyman Pearson Lemma) 

 try to “eliminate” correlations  e.g. linear de-correlation  PDE introduces fuzzy logic 

product of marginal PDFs 

(1-dim “histograms”) 
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Classifier Training and Loss-Function 

23 

 kNN,Likelihood   estimate underlying  PDF in D-  and 1- dimension  

  exploit Neyman Pearson lemma 

  limitations: curse of dimensionality  and correlations 

 

 Alternative: provide a set of “basis” functions (or model):  

 𝑦 𝑥 = ∑𝑤𝑖ℎ𝑖(𝑥)  

 adjust parameters 𝑤𝑖   optimally separating hyperplane (surface) 

 called “training 

 

 optimally separating   minimum in expectation value of a Loss function: 

𝐿(𝑦𝑡𝑟𝑢𝑒 , 𝑦 𝑥 )  penalizes prediction errors in training 

 

 𝐸 𝐿 = 𝐸 (𝑦𝑡𝑟𝑢𝑒−𝑦 𝑥 2]     squared error loss (regression) 

 𝐸 𝐿 = 𝐸[ 𝑦𝑡𝑟𝑢𝑒 − 𝑦 𝑥 ]    misclassification error (classification) 

 

where:    regression:   𝑦𝑡𝑟𝑢𝑒  the functional value of training events 

                classification:   𝑦𝑡𝑟𝑢𝑒  =1 for signal, =0 (-1) background  

 minimize 
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Linear Discriminant 

24 

M

iw h (x)1 D i

i=0

y(x ={x ,..., x })=

i.e.  any linear function of the input variables:    linear decision boundaries  


D

1 D 0 i i

i=1

y(x ={x ,..., x })= w + w x

H1 

H0 

x1 

x2 

Linear Discriminant: 
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General: 

determine PDF of the test statistic y(x) 

 determine the “weights” w that separate “best” 



Fisher’s Linear Discriminant 

25 

0  
D

1 D i i

i=1

y(x ={x ,..., x })= y(x,w )= w w x

determine the “weights” w that do “best” 

y 

Maximise “separation” between the S and B  

 

 minimise overlap of the distribution yS and yB  

maximise the distance between the two mean 

values of the classes 

minimise the variance within each class 

yS 
yB 

 maximise  
B S

2

B S

2 2

y y

(E(y ) -E(y ))
J(w) =

σ +σ

T

T

w Bw "in between" variance
= =

w Ww "within" variance

note: these quantities can be calculated from the training data 

-1

w S B
∇ J(w)= 0 ⇒ w ∝W(x - x ) the Fisher coefficients 
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Neural Networks 

26 

for “arbitrary” non-linear decision boundaries  y(x)  non-linear function 

 Think of hi(x) as a set of “basis” functions 

 If h(x) is sufficiently general (i.e. non linear), a linear 

combination of “enough” basis function should allow to 

describe any possible discriminating function y(x) 

Imagine you chose do the following: 

i0 ij j

j=1

y(x)= A w + w x
 

 
 


D

there are also mathematical proves for  previous statement. 

Ready is the Neural Network 

Now we “only” need to find the appropriate “weights” w  

M

0i i0 ij j

i j=1

y(x)= w A w + w x
 

 
 

 
D

1
A(x)= :

1+e

the sigmoid function

-x

y(x) = 

 a linear combination of 

     non linear function(s) of 

    linear combination(s) of 

    the input data 

 
M

i i

i

y(x)= w h (x)

i0 ij j

j=1

y(x)= w + w x
D

hi(x) 
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Neural Networks: 

Multilayer Perceptron MLP 

27 

But before talking about the weights, let’s try to “interpret” the formula as a Neural Network: 

 Nodes in hidden layer represent the “activation functions” whose arguments are linear 

combinations of input variables  non-linear response to the input 

 The output is a linear combination of the output of the activation functions at the internal nodes 

 It is straightforward to extend this to “several” input layers 

 Input to the layers from preceding nodes only  feed forward network (no backward loops) 

  input layer hidden layer ouput layer 

output: 

Dvar 
discriminating 
input variables 
as input  
+ 1 offset  

1

( ) 1 xA x e
-

- 

“Activation” function 
e.g. sigmoid: 
 
 
 
or tanh 
or … 

M

0i i0 ij j

i j=1

y(x)= w A w + w x
 

 
 

 
D

1 

i 

. . . 

D 

1 

j 

M1 

. . . 

11w

ijw

1 jw. . . 
. . . 

k 

. . . 

1jw

D+1 
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Neural Networks:  

Multilayer Perceptron MLP 

28 

 try to “interpret” the formula as a Neural Network: 

nodesneurons 

links(weights)synapses 

Neural network: try to simulate reactions of 

a brain to certain stimulus (input data) 

  input layer hidden layer ouput layer 

output: 

Dvar 
discriminating 
input variables 
as input  
+ 1 offset  

1

( ) 1 xA x e
-

- 

“Activation” function 
e.g. sigmoid: 
 
 
 
or tanh 
or … 

M

0i i0 ij j

i j=1

y(x)= w A w + w x
 

 
 

 
D

1 

i 

. . . 

D 

1 

j 

M1 

. . . 

11w

ijw

1 jw. . . 
. . . 

k 

. . . 

1jw

D+1 
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Neural Network Training 

29 

idea:  using the “training events” adjust the weights such, that  

 y(x)0 for background events  

 y(x)1 for signal events 

how do we adjust ? 

minimize Loss function:   

 
events

2

i

i

L(w) (y(x ) y(C)) - where  C




1for C = signal
y =

0 for C = backgr.

 y(x):  very “wiggly” function  many local minima.    

one global overall fit not efficient/reliable  

back propagation (learn from experience, gradually adjust your resonse) 

online learning (update event by event)   

batch learning (update after seeing the whole sample) 

i.e. use usual “sum of squares” or 

misclassification error 

true  

event type 

predicted 

 event type 
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Neural Network Training 

back-propagation 

30 

  i0 ij j

j=1

= y(x) - y(C) A w + w x
 

 
 


0i

L

w

D∂

∂

 start with random weights 

adjust weights in each step    steepest descend of the “Loss”- function L 

early stopping: traditional way to avoid overtraining  

there are also other “regularisation” 

2

iL(w) (y(x ) y(C)) -n 1 nw w learning rate    wL(w) =

 for weights connected to output nodes 

M

0i i0 ij j

i j=1

y(x)= w A w + w x
 

 
 

 
D

 for weights not connected to output nodes 

… a bit more complicated formula 

note: all these gradients are easily calculated from the training event 

 training is repeated n-times over the whole training data sample.   how often ?? 
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Overtraining 

31 

S 

B 

x1 

x2 
S 

B 

x1 

x2 

 training:  n-times over all training data    how often ?? 

 it seems intuitive that this boundary will give better results in another 

statistically independent data set than that one 

e.g. stop training before you learn 

statistical fluctuations in the data 

verify on independent “test” sample 

training cycles 

c
la

s
s
if
ic

a
io

n
 e

rr
o
r  

training sample 

test sample possible overtraining is concern for 

every “tunable parameter” a of 

classifiers: Smoothing parameter,   

n-nodes… 
a 
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Boosted Decision Trees 

32 

 Decision Tree: Sequential application of cuts splits 

the data into nodes, where the final nodes (leafs) 

classify an event as signal or background 
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Boosted Decision Trees 

33 

 Decision Tree: Sequential application of cuts splits 

the data into nodes, where the final nodes (leafs) 

classify an event as signal or background 

 Boosted Decision Trees (1996): 
combine a whole forest of Decision Trees, 

derived from the same sample, e.g. using  

different event weights. 

 overcomes the stability problem 

 increases  performance 

 became popular in HEP since 

MiniBooNE, B.Roe et.a., NIM 543(2005) 

 Each branch  one standard “cut” sequence 

 easy to interpret, visualised 

 independent of monotonous variable 
transformations, immune against outliers  

 weak variables are ignored (and don’t 
(much) deteriorate performance) 

 Disadvatage  very sensitive to statistical 
fluctuations in training data 
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Boosting 

34 

Training Sample 
classifier  

C(0)(x) 

Weighted 

Sample 

re-weight 

classifier  

C(1)(x) 

Weighted 

Sample 

re-weight 

classifier  

C(2)(x) 

Weighted 

Sample 

re-weight 

Weighted 

Sample 

re-weight 

classifier  

C(3)(x) 

classifier  

C(m)(x) 

ClassifierN
(i)

i

i

y(x) w C (x) 
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Adaptive Boosting (AdaBoost) 

35 

Training Sample 
classifier  

C(0)(x) 

Weighted 

Sample 

re-weight 

classifier  

C(1)(x) 

Weighted 

Sample 

re-weight 

classifier  

C(2)(x) 

Weighted 

Sample 

re-weight 

Weighted 

Sample 

re-weight 

classifier  

C(3)(x) 

classifier  

C(m)(x) 

err

err

err

1 f
with :

f

misclassified events
f

all events

-



ClassifierN (i)
(i)err

(i)
i err

1 f
y(x) log C (x)

f

 -
  

 


 AdaBoost re-weights events 

misclassified by previous classifier by: 

 AdaBoost weights the classifiers also 

using the error rate of the individual 

classifier according to:  
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AdaBoost: A simple demonstration 

36 

The example: (somewhat artificial…but nice for demonstration) :   

• Data file with three “bumps” 

• Weak classifier (i.e. one single simple “cut”   ↔ decision tree stumps ) 

B S 

var(i) > x var(i) <= x 

a) Var0 > 0.5  εsig=66% εbkg ≈ 0%   misclassified events in total 16.5% 

or  

b) Var0 < -0.5  εsig=33% εbkg ≈ 0%  misclassified events in total 33% 

the training of a single decision tree stump will find “cut a)” 

a) b) 
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AdaBoost: A simple demonstration 

37 

The first “tree”, choosing cut a) will give an error fraction: err = 0.165 

.. and hence will 

chose:   “cut b)”:  

Var0 < -0.5 

 

  

b) 

The combined classifier:  Tree1 + Tree2 

the (weighted) average of the response to 

a test event from both trees is able to 

separate signal from background as 

good as one would expect from the most 

powerful classifier 

 

 before building the next “tree”:  weight wrong classified training events by  ( 1-err/err) ) ≈ 5  

 the next “tree” sees essentially the following data sample: 

re-weight 
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Bagging and Randomised Trees 

38 

Bagging:  

 combine trees grown from “bootstrap” samples  

(i.e re-sample training data with replacement)  

 

Randomised Trees: (Random Forest: trademark L.Breiman, A.Cutler) 

 combine trees grown with:  

 random bootstrap (or subsets) of the training data only 

 consider at each node only a random subsets of variables for 

the split 

 NO Pruning (despite possibly larger trees than AdaBoost) ! 

  or any “combination” of Bagging/Randomising/Boosting 

These combined classifiers work surprisingly well, are very 

stable and almost perfect “out of the box” classifiers 
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General Advice for (MVA) Analyses 

39 

 There is no magic in MVA-Methods: 

no need to be too afraid of “black boxes”   they are not sooo hard to understand 

you typically still need to make careful tuning and do some “hard work” 

no “artificial intelligence” … just “fitting decision boundaries” in a given model 

 The most important thing at the start is finding good observables  

good separation power between S and B 

little correlations amongst each other 

no correlation with the parameters you try to measure in your signal sample! 

 Think also about possible combination of variables  

this may allow you to eliminate correlations 

 rem.: you are MUCH more intelligent than what the algorithm will do 

 Apply pure preselection cuts and let the MVA only do the difficult part. 

 “Sharp features should be avoided”  numerical problems, loss of 

information when binning is applied 

simple variable transformations (i.e. log(variable) ) can often smooth out these areas 

and allow signal and background differences to appear in a clearer way  

 Treat regions in the detector that have different features “independent” 

can introduce correlations where otherwise the variables would be uncorrelated! 



MVA and Systematic Uncertainties 

40 

Multivariate Classifiers  THEMSELVES  don’t have systematic uncertainties 

 even if trained on a “phantasy Monte Carlo sample” 

 there are only “bad” and “good” performing classifiers ! 

 OVERTRAINING is NOT a systematic uncertainty !! 

 difference between two classifiers resulting from two different training 

runs DO NOT CAUSE SYSTEMATIC ERRORS 

 same as with “well” and “badly” tuned classical cuts 

MVA classifiers:  only select a region(s) in observable space  

 

 

 Efficiency estimate (Monte Carlo)  statistical/systematic uncertainty 

 involves “estimating” (uncertainties in ) distribution of 𝑃𝐷𝐹𝑦𝑆(𝐵)
  

 statistical “fluctuations”  re-sampling  (Bootstrap) 

 “smear/shift/change” input distributions and determine 𝑃𝐷𝐹𝑦𝑆(𝐵)
 

 estimate systematic error/uncertainty on efficiencies 

 

 Only involves “test” sample… systematic uncertainties have nothing to do 

with the training !! 

 



MVA and Systematic Uncertainties 

minimize “systematic” uncertainties 

 “classical cuts” : do not cut near steep edges, or in regions of large sys. 

uncertainty  

 hard to “translate”:  try to: 

 artificially degrade discriminative power (shifting/smearing) of systematically 

“uncertain” observables  IN THE TRAINING  

 

 Don’t be afraid of correlations! 

 typically “kinematically generated”  easily modeled correctly 

 “classical cuts” are also affected by “wrongly modeled correlations” 

 MVA method let’s you spot this 

 look at “projections” of input variables  

 + the combined MVA test statistic “y(x)” ! 
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Summary 
Multivariate Classifiers (Regressors)    1 dimensional test statistic 

y(x) and y(x)>c defines decision boundary 

 

Mulit-dimensional (and projective) Likelihood 

estimate the PDF and exploint Neyman-Pearsons Lemma: best test 

statistic is the Likelihood ratio 

 

 Other classifiers “fit” a decision boundary “model” 

Linear:  Linear Classifier (e.g. Fisher Discriminant) 

Non-Linear 

 Neural Network 

 Boosted Decision Trees 

 (Support Vector Machines)  very nice but hard to explain in 5min… 

 No “magic” or “intelligence” … just fitting ! 

 Once one understands what “they are” you know 

systematic uncertainties don’t lie in the training !! 

estimate them similar as you’d do in classical cuts  
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Backup and Left overs… 
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Growing a Decision Tree 

44 

  training sample at the root node 

 split training sample into two 

variable and cut with  best separation gain 

 continue splitting until:  

 minimal #events per node  

 maximum number of nodes 

 maximum depth specified 

 (a split doesn’t give a minimum separation gain) 

 not a good idea  see “chessboard” 

 Decision trees: grow large tree and then 

‘prune’ 

 Boosted Decision tree: early stopping  

 leaf-nodes classify S,B according to the 

majority of events  or give a S/B probability 
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“A Statistical View of Boosting” 

(Friedman 1998 et.al) 

45 

Abstract:    

   …. For the two-class problem, boosting can be viewed as an approximation to additive modeling on the logistic scale 

using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit 

nearly identical results to boosting. Direct multi-class generalizations based on multinomial likelihood are derived that 

exhibit performance comparable to other recently proposed multi-class ….  

Boosted Decision Trees:  two different interpretations 

   give events that are “difficult to categorize” more weight and average afterwords the 

results of all classifiers that were obtained with different weights 

   see each Tree as a “basis function” of a possible classifier  

• boosting or bagging is just a mean to generate a set of  “basis funciton” 

• linear combination of basis functions gives final classifier or: final classifier is an 

expansion in the basis functions. 

 

• every “boosting” algorithm can be interpreted as optimising in a “greedy stagewise” 

manner (i.e. from the current point in the optimisation –e.g.building of the decision tree 

forest-  one chooses the parameters for the next boost step (weights) such that one 

moves a long the steepest gradient of the loss function) 

• AdaBoost: “exponential loss function” = exp( -y0y(α,x))  where y0=-1 (bkg), y0=1 (signal) 

 

i i

tree

y( ,x) T(x)a a 
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Gradient Boost 

46 

 Gradient Boost is a way to implement “boosting” with arbitrary “loss functions” by 

approximating “somehow” the gradient of the loss function 

 

 AdaBoost: Exponential loss exp( -y0y(α,x))  theoretically sensitive to outliers 

 

 Binomial log-likelihood loss ln(1 + exp( -2y0y(α,x))   more well behaved loss function,    
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Support Vector Machines 

47 Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012  

 Neural Networks are complicated by finding the proper 

optimum “weights” for best separation power by “wiggly” 

functional behaviour of the piecewise defined separating 

hyperplane 

 KNN (multidimensional likelihood) suffers disadvantage that 

calculating the MVA-output of each test event involves 

evaluation of  ALL training events 

 If Boosted Decision Trees in theory are always weaker than a 

perfect Neural Network 



Support Vector Machine 

48 

 There are methods to create linear decision boundaries using only measures of 

distances  (= inner (scalar) products) 

  leads to quadratic optimisation problem  

 The decision boundary in the end is defined only by training events that are 

closest to the boundary 

 suitable variable transformations into a higher dimensional space may allow   

separation with linear decision boundaries non linear problems 

 

 Support Vector Machine 
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Support Vector Machines 

49 

x1 

x2 

margin  

support 

vectors 

S
e
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a
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b
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a
ta

 

 hyperplane that  separates S from B  

 Linear decision boundary 

 Best separation: maximum distance (margin) 

between closest events (support) to hyperplane 

N
o
n

-s
e
p
a
ra

b
le

 d
a
ta

 

 Solution of largest margin depends only on  

inner product of support vectors (distances)  

 quadratic minimisation problem 

1 

2 

4 

3  If data non-separable add misclassification cost 

parameter C·ii to minimisation function  
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Support Vector Machines 

50 

 Non-linear cases: 
 Transform variables into higher dimensional feature space where again a linear 

boundary (hyperplane) can separate the data 

(x1,x2) S
e
p
a

ra
b
le

 d
a
ta

 
N

o
n
-s

e
p

a
ra

b
le

 d
a

ta
 

 hyperplane that  separates S from B  

 Linear decision boundary 

 Best separation: maximum distance (margin) 

between closest events (support) to hyperplane 

 largest margin - inner product of support vectors 

(distances)  quadratic minimisation problem 

 If data non-separable add misclassification cost 

parameter C·ii to minimisation function  
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Support Vector Machines 

51 

x1 

x2 

x1 

x3 

x1 

x2 

 Non-linear cases: 

Kernel size paramter typically needs careful tuning!   (Overtraining!) 

 non linear  variable transformation  linear separation in transformed feature space  

 no explicit transformation specified   Only its “scalar product”  x·x  Ф(x)·Ф(x) needed. 

 certain Kernel Functions can be interpreted as scalar products between transformed 

vectors in the higher dimensional feature space. e.g.: Gaussian, Polynomial, Sigmoid 

 Choose Kernel and fit the hyperplane using the linear techniques developed above 

(x1,x2) S
e
p
a

ra
b
le

 d
a
ta

 
N

o
n
-s

e
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b
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a
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 Find hyperplane that best separates signal 

from background  

 Linear decision boundary 

 Best separation: maximum distance (margin) 

between closest events (support) to hyperplane 

 largest margin - inner product of support vectors 

(distances)  quadratic minimisation problem 

 If data non-separable add misclassification cost 

parameter C·ii to minimisation function  
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Support Vector Machines 

52 

 How does this “Kernel” business work? 

 Kernel function  == scalar product in “some transformed” variable space 

 

 standard:   𝑥 ∙ 𝑦 = ∑𝑥𝑖𝑦𝑖 = 𝑥 𝑦 ∗ 𝑐𝑜𝑠(𝜃) 

 large if :   𝑥 ∙ 𝑦    are in the same “direction” 

 zero if :   𝑥 ∙ 𝑦   are orthogonal  (i.e. point along different axes / dimension) 

 

 e.g. Gauss kernel:     Φ 𝑥 ∙ Φ 𝑦 = 𝐾 𝑥 , 𝑦 = 𝑒𝑥𝑝(−
𝑥 −𝑦 2

2𝜎2 ) 

 zero if ponts:  𝑥  𝑎𝑛𝑑 𝑦    “far apart” in original data space 

 large only in “vicinity” of each other 

 

 𝜎 < distance between training data points: 

 each data point is “lifted” into its “own” dimension 

 full separation of “any” event configuration with decision boundary along 

coordinate axis 

 well, that would of course be:  overtraining   
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Support Vector Machines 
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SVM: the Kernel size parameter: 

example: Gaussian Kernels 

 Kernel size (s of the Gaussian) choosen 

too large:  not enough “flexibility” in the 

underlying transformation 

 Kernel size (s of the Gaussian) choosen 

propperly for the given problem 

colour code:  

Red  large signal 

probability:  
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What if there are correlations? 

54 Helge Voss 

Typically correlations are present:  Cij=cov[ xi , x j ]=E[ xi xj ]−E[ xi ]E[ xj ]≠0  (i≠j) 

 pre-processing:  choose set of linear transformed input variables for which Cij = 0 (i≠j) 
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Decorrelation 

55 Helge Voss 

Attention: eliminates only linear correlations!! 

 Determine square-root C  of correlation matrix C, i.e., C = C C  

compute C  by diagonalising C: 

 transformation from original (x) in de-correlated variable space (x) by: x = C -1x  

 

    T TD S SSSC C D  

 Find variable transformation that diagonalises the covariance matrix 
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