
Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012 1

Introduction to Statistics

CERN Summer Student Lecture Program 2012

 … and Machine Learning
(in this last lecture)

Helge Voss

Outline

Why Statistics

What is Probability :

frequentist / Bayesian interpretation

Hypothesis testing

 error types and Neyman-Pearson Lemma, confidence level 𝛼 and p-value

 new particle searches – example: Higgs

 Lecture 3

Parameter estimation

 Maximum Likelihood fit

 𝜒2-fit

Neyman Confidence belts Feldman/Cousins …

(Monte Carlo Methods (Random numbers/Integration) see slides)

 Lecture 4

Machine Learning / Pattern Recognition
Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012 2

Outline

3

What are Multivariate classification/regression algorithms (MVA)

Multidimensional Likelihood (kNN : k-Nearest Neighbour)

 Projective Likelihood (naïve Bayes)

 Linear Classifier

 Non linear Classifiers

 Neural Networks

 (Support Vector Machines too bad, no time..)

 Boosted Decision Trees

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

 MVA-Literature /Software

Packages... a biased selection

4 Helge Voss

Software packages for Mulitvariate Data Analysis/Classification

 individual classifier software

 e.g. “JETNET” C.Peterson, T. Rognvaldsson, L.Loennblad

and many other packages

 attempts to provide “all inclusive” packages

 StatPatternRecognition: I.Narsky, arXiv: physics/0507143

 http://www.hep.caltech.edu/~narsky/spr.html

 TMVA: Höcker,Speckmayer,Stelzer,Therhaag,von Toerne,Voss, arXiv: physics/0703039

http://tmva.sf.net or every ROOT distribution (development moved from SourceForge to ROOT repository)

 WEKA: http://www.cs.waikato.ac.nz/ml/weka/

 “R”: a huge data analysis library: http://www.r-project.org/

Literature:
 T.Hastie, R.Tibshirani, J.Friedman, “The Elements of Statistical Learning”, Springer 2001

 C.M.Bishop, “Pattern Recognition and Machine Learning”, Springer 2006

Conferences: PHYSTAT, ACAT,…

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

http://www.hep.caltech.edu/~narsky/spr.html
http://www.hep.caltech.edu/~narsky/spr.html
http://tmva.sf.net/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/

Event Classification

5 Helge Voss

A linear boundary? A nonlinear one? Rectangular cuts?

S

B

x1

x2 S

B

x1

x2 S

B

x1

x2

 Which model/class ? Pro and cons ?

 Once decided on a class of boundaries, how to find the “optimal” one ?

 Discriminate Signal from Background

 how to set the decision boundary to select events of type S ?

 we have discriminating variables x1, x2, …

Low variance (stable), high bias methods High variance, small bias methods

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Regression

6 Helge Voss

linear?

x

f(x)

x

f(x)

x

f(x)

 constant ? non - linear?

estimate a “functional behaviour” from a set of ‘known measurements” ?

 e.g. : “D”-variables that somehow characterize the shower in your calorimeter

 energy as function of the calorimeter shower parameters .

 seems trivial ?

what if you have many input variables?

Cluster Size

E
n

e
rg

y

 seems trivial ? The human brain has very good pattern recognition capabilities!

 if we had an analytic model (i.e. know the function is a nth -order polynomial) than

we know how to fit this (i.e. Maximum Likelihood Fit)

 but what if we just want to “draw any kind of curve” and parameterize it?

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Regression model functional behaviour

7 Helge Voss

x

f(x)

 e.g. “D”-variables that somehow characterize the shower in your calorimeter.

 Monte Carlo or testbeam

 data sample with measured cluster observables + known particle energy

 = calibration function (energy == surface in D+1 dimensional space)

1-D example 2-D example

 better known: (linear) regression fit a known analytic function

 e.g. the above 2-D example reasonable function would be: f(x) = ax2+by2+c

 don’t have a reasonable “model” ? need something more general:

 e.g. piecewise defined splines, kernel estimators, decision trees to approximate f(x)

x
y

f(x,y)

events generated according: underlying distribution

 NOT in order to “fit a parameter”

 provide prediction of function value f(x) for new measurements x (where f(x) is not known)

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Event Classification

8 Helge Voss

 Each event, if Signal or Background, has “D” measured variables.

D

“feature

 space”

y(x)

most general form

y = y(x); x D

x={x1,….,xD}: input variables

y(x): RD
R:

 plotting (historamming)

the resulting y(x) values:

 Find a mapping from D-dimensional input-observable =”feature” space

 to one dimensional output class label

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Event Classification

9 Helge Voss

 Each event, if Signal or Background, has “D” measured variables.

D

“feature

 space”

y(B) 0, y(S) 1

 y(x): “test statistic” in D-dimensional space of input variables

y(x): Rn
R:

 distributions of y(x): PDFS(y) and PDFB(y)

 overlap of PDFS(y) and PDFB(y) separation power , purity

 used to set the selection cut!

 Find a mapping from D-dimensional input/observable/”feature” space

 y(x)=const: surface defining the decision boundary.

efficiency and purity

to one dimensional output

 class labels

> cut: signal

= cut: decision boundary

< cut: background

y(x):

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Classification ↔ Regression

10 Helge Voss

Classification:

 Each event, if Signal or Background, has “D” measured variables.

D

“feature

 space”

 y(x): RD
R: “test statistic”

in D-dimensional space of

input variables

 y(x)=const: surface defining

the decision boundary.

y(x): RD
R:

Regression:

 Each event has “D” measured variables + one function value

 (e.g. cluster shape variables in the ECAL + particles energy)

 y(x): RD
R “regression function”

 y(x)=const hyperplanes where the

 target function is constant

Now, y(x) needs to be build such that it

best approximates the target, not such

that it best separates signal from bkgr.
X1

X2

f(x1,x2)

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Classification and Regression

Visualisation in 2D

11 Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

X1

X2

y
(x

1
,x

2
)

X1

X2

y
(x

1
,x

2
) X2

X1

X2

X1

Test Statistic y(x):

 function of the the input

variables :

 Classification:

 y(x)=const decision

boundaries !

 Regression:

 y(x) = your target function

Event Classification

12 Helge Voss

S S

S S B B

f PDF (y(x))
P(C S | y(x))

f PDF (y(x)) f PDF (y(x))

y(x)

PDFB(y). PDFS(y): normalised distribution of y=y(x)

for background and signal events

(i.e. the “function” that describes the shape of the

distribution)

with y=y(x) one can also say PDFB(y(x)), PDFS(y(x)): :

Probability densities for background and signal

now let’s assume we have an unknown event from the example above for which y(x) = 0.2

is the probability of an event with

measured x={x1,….,xD} that gives y(x)

to be of type signal

y(x): Rn
R: the mapping from the “feature space” (observables) to one output variable

let fS and fB be the fraction of signal and background events in the sample, then:

 PDFB(y(x)) = 1.5 and PDFS(y(x)) = 0.45

1.5

 0.45

S S

S S B B

f PDF (y)
P(C S | y)

f PDF (y) f PDF (y)

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Event Classification

13 Helge Voss

P(Class=C|x) (or simply P(C|x)) : probability that the event class is of C, given the

 measured observables x={x1,….,xD} y(x)

P(y | C) P(C)
P(Class = C| y) =

P(y)

Prior probability to observe an event of “class C”

i.e. the relative abundance of “signal” versus

“background” P C = 𝑓𝐶 =
𝑛𝐶

𝑛𝑡𝑜𝑡

Overall probability density to observe the actual

measurement y(x). i.e.
Classes

P(y) = P(y | Class)P(Class)

Probability density distribution

according to the measurements x

and the given mapping function

Posterior probability

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

 It’s a nice “exercise” to show that this application of Bayes’ Theorem

gives exactly the formula on the previous slide !

Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012 14

y(x)

y(B) 0, y(S) 1

Signal(H1) /Background(H0)

discrimination:

0 1

1

0

1
−

𝛼
 /

1
-

e b
a
c
k
g
r.

 𝟏 − 𝜷 / esignal

which one of those

two blue ones is the better??

y’(x)

y’’(x)

Type-1 error small

Type-2 error large

Type-1 error large

Type-2 error small

Signal(H1) /Background(H0) :

 Type 1 error: reject H0 although true background contamination

 Significance α: background sel. efficiency 1- a: background rejection

 Type 2 error: accept H0 although false loss of efficiency

 Power: 1- β signal selection efficiency

Receiver Operation Charactersic

(ROC) curve

MVA and Machine Learning

15 Helge Voss

 Finding y(x) : Rn
R

given a certain type of model class y(x)

“automatically” using “known” or “previously solved” events

 i.e. learn from known “patterns”

such that y(x):

 separates well Signal from Background in training data

 (regression: fits well the target function for training events

 … AND in new events predictions

 supervised machine learning

 Of course… there’s no magic, we still need to:

choose the discriminating variables

choose the class of models (linear, non-linear, flexible or less flexible)

tune the “learning parameters” bias vs. variance trade off

check generalization properties

consider trade off between statistical and systematic uncertainties

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Event Classification

16 Helge Voss

Unfortunately, the true probability densities functions are typically unknown:

 Neyman-Pearsons lemma doesn’t really help us directly

* hyperplane in the strict sense goes through the origin. Here I mean “affine set” to be precise

Monte Carlo simulation or in general cases: set of known (already classified) “events”

2 different ways: Use these “training” events to:

 estimate the functional form of p(x|C): (e.g. the differential cross section folded with the

detector influences) from which the likelihood ratio can be obtained

 e.g. D-dimensional histogram, Kernel densitiy estimators, …

 find a “discrimination function” y(x) and corresponding decision boundary (i.e.

hyperplane* in the “feature space”: y(x) = const) that optimially separates signal from

background

 e.g. Linear Discriminator, Neural Networks, …

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

K- Nearest Neighbour

17 Helge Voss

 estimate probability density P(x) in D-dimensional space:

 The only thing at our disposal is our “training data”

x1

x2

“events” distributed according to P(x)

“x”

1

1
1, , 1...x x

K , with (u) 2

0, otherwise

N
in

n

u i D
k k

h

 -

 k(u): is called a Kernel function

 For the chosen a rectangular volume

h

 Say we want to know P(x) at “this” point “x”

 One expects to find in a volume V around point “x”

N*∫P(x)dx events from a dataset with N events

V

 K (from the “training data”) estimate of average P(x) in the volume V: ∫P(x)dx = K/N

 V

 Classification: Determine

 PDFS(x) and PDFB(x)

likelihood ratio as classifier!

 K-events:

 Kernel Density estimator of the probability density

1

x x1 1
(x)

-

N
n

D
n

P k
N h h

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Nearest Neighbour and Kernel

Density Estimator

18 Helge Voss

 Regression: If each events with (x1,x2) carries a “function value” f(x1,x2) (e.g. energy of incident

particle)

i.e.: the average function value

x1

x2

“events” distributed according to P(x)

“x”

1

1
1, , 1...x x

K , with (u) 2

0, otherwise

N
in

n

u i D
k k

h

 -

 k(u): is called a Kernel function:

rectangular Parzen-Window

h

N
i i

i V

1 ˆk(x x)f(x) f(x)P(x)dx
N

-

 K (from the “training data”) estimate of average P(x) in the volume V: ∫P(x)dx = K/N

 V

 estimate probability density P(x) in D-dimensional space:

 The only thing at our disposal is our “training data”

 For the chosen a rectangular volume

 Say we want to know P(x) at “this” point “x”

 One expects to find in a volume V around point “x”

N*∫P(x)dx events from a dataset with N events

V

 K-events:

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Nearest Neighbour and Kernel

Density Estimator

19 Helge Voss

x1

x2

“x”

h

 determine K from the “training data” with signal and

background mixed together

x1

x2

kNN : k-Nearest Neighbours

 relative number events of the various

classes amongst the k-nearest neighbours

Sn
y(x)

K

“events” distributed according to P(x)
 estimate probability density P(x) in D-dimensional space:

 The only thing at our disposal is our “training data”

 For the chosen a rectangular volume

 Say we want to know P(x) at “this” point “x”

 One expects to find in a volume V around point “x”

N*∫P(x)dx events from a dataset with N events

V

 K-events:

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

 Kernel Density Estimator: replace “window” by “smooth”

kernel function weight events by distance

Kernel Density Estimator

20 Helge Voss

 h: “size” of the Kernel “smoothing parameter”

 chosen size of the “smoothing-parameter” more

important than kernel function

(Christopher M.Bishop)

 h too small: overtraining

 h too large: not sensitive to features in P(x)

 a drawback of Kernel density estimators:

Evaluation for any test events involves ALL TRAINING DATA typically very time consuming

1

1
nP() ()

 x x - x
N

h

n

K
N

: a general probability density estimator using kernel K

 which metric for the Kernel (window)?

 normalise all variables to same range

 include correlations ?

 Mahalanobis Metric: x*x xV-1x

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

“Curse of Dimensionality”

21 Helge Voss

Bellman, R. (1961), Adaptive

Control Processes: A

Guided Tour, Princeton

University Press.

Shortcoming of nearest-neighbour strategies:

 in higher dimensional classification/regression cases

the idea of looking at “training events” in a reasonably

small “vicinity” of the space point to be classified

becomes difficult:

1/edgelength=(fraction of volume) D

consider: total phase space volume V=1D

 for a cube of a particular fraction of the volume:

 In 10 dimensions: in order to capture 1% of the phase space

 63% of range in each variable necessary that’s not “local” anymore..

We all know:

 Filling a D-dimensional histogram to get a mapping of the PDF is typically unfeasable due

to lack of Monte Carlo events.

Therefore we still need to develop all the alternative classification/regression techniques

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Naïve Bayesian Classifier

(projective Likelihood Classifier)

22 Helge Voss

Multivariate Likelihood (k-Nearest Neighbour)

 estimate the full D-dimensional joint probability density

If correlations between variables are weak:
D

i

i 0

P() P()

 x x

event

event

event

variables

vari

signa

a

,

PDE

b s

,

l

k

,

l

e

P (x)

()

P (x)

i

C

C

i

i

i i

cla s i

k

k

sse

y x

discriminating variables

Classes: signal,

background types

Likelihood ratio

for event event

PDFs

One of the first and still very popular MVA-algorithm in HEP

 No hard cuts on individual variables,

 allow for some “fuzzyness”: one very signal like variable may

counterweigh another less signal like variable

optimal method if correlations == 0 (Neyman Pearson Lemma)

 try to “eliminate” correlations e.g. linear de-correlation PDE introduces fuzzy logic

product of marginal PDFs

(1-dim “histograms”)

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Classifier Training and Loss-Function

23

 kNN,Likelihood estimate underlying PDF in D- and 1- dimension

 exploit Neyman Pearson lemma

 limitations: curse of dimensionality and correlations

 Alternative: provide a set of “basis” functions (or model):

 𝑦 𝑥 = ∑𝑤𝑖ℎ𝑖(𝑥)

 adjust parameters 𝑤𝑖 optimally separating hyperplane (surface)

 called “training

 optimally separating minimum in expectation value of a Loss function:

𝐿(𝑦𝑡𝑟𝑢𝑒 , 𝑦 𝑥) penalizes prediction errors in training

 𝐸 𝐿 = 𝐸 (𝑦𝑡𝑟𝑢𝑒−𝑦 𝑥 2] squared error loss (regression)

 𝐸 𝐿 = 𝐸[𝑦𝑡𝑟𝑢𝑒 − 𝑦 𝑥] misclassification error (classification)

where: regression: 𝑦𝑡𝑟𝑢𝑒 the functional value of training events

 classification: 𝑦𝑡𝑟𝑢𝑒 =1 for signal, =0 (-1) background

 minimize

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Linear Discriminant

24

M

iw h (x)1 D i

i=0

y(x ={x ,..., x })=

i.e. any linear function of the input variables: linear decision boundaries

D

1 D 0 i i

i=1

y(x ={x ,..., x })= w + w x

H1

H0

x1

x2

Linear Discriminant:

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

General:

determine PDF of the test statistic y(x)

 determine the “weights” w that separate “best”

Fisher’s Linear Discriminant

25

0
D

1 D i i

i=1

y(x ={x ,..., x })= y(x,w)= w w x

determine the “weights” w that do “best”

y

Maximise “separation” between the S and B

 minimise overlap of the distribution yS and yB

maximise the distance between the two mean

values of the classes

minimise the variance within each class

yS
yB

 maximise
B S

2

B S

2 2

y y

(E(y) -E(y))
J(w) =

σ +σ

T

T

w Bw "in between" variance
= =

w Ww "within" variance

note: these quantities can be calculated from the training data

-1

w S B
∇ J(w)= 0 ⇒ w ∝W(x - x) the Fisher coefficients

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Neural Networks

26

for “arbitrary” non-linear decision boundaries y(x) non-linear function

 Think of hi(x) as a set of “basis” functions

 If h(x) is sufficiently general (i.e. non linear), a linear

combination of “enough” basis function should allow to

describe any possible discriminating function y(x)

Imagine you chose do the following:

i0 ij j

j=1

y(x)= A w + w x

D

there are also mathematical proves for previous statement.

Ready is the Neural Network

Now we “only” need to find the appropriate “weights” w

M

0i i0 ij j

i j=1

y(x)= w A w + w x

D

1
A(x)= :

1+e

the sigmoid function

-x

y(x) =

 a linear combination of

 non linear function(s) of

 linear combination(s) of

 the input data

M

i i

i

y(x)= w h (x)

i0 ij j

j=1

y(x)= w + w x
D

hi(x)

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Neural Networks:

Multilayer Perceptron MLP

27

But before talking about the weights, let’s try to “interpret” the formula as a Neural Network:

 Nodes in hidden layer represent the “activation functions” whose arguments are linear

combinations of input variables non-linear response to the input

 The output is a linear combination of the output of the activation functions at the internal nodes

 It is straightforward to extend this to “several” input layers

 Input to the layers from preceding nodes only feed forward network (no backward loops)

 input layer hidden layer ouput layer

output:

Dvar
discriminating
input variables
as input
+ 1 offset

1

() 1 xA x e
-

-

“Activation” function
e.g. sigmoid:

or tanh
or …

M

0i i0 ij j

i j=1

y(x)= w A w + w x

D

1

i

. . .

D

1

j

M1

. . .

11w

ijw

1 jw. . .
. . .

k

. . .

1jw

D+1

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Neural Networks:

Multilayer Perceptron MLP

28

 try to “interpret” the formula as a Neural Network:

nodesneurons

links(weights)synapses

Neural network: try to simulate reactions of

a brain to certain stimulus (input data)

 input layer hidden layer ouput layer

output:

Dvar
discriminating
input variables
as input
+ 1 offset

1

() 1 xA x e
-

-

“Activation” function
e.g. sigmoid:

or tanh
or …

M

0i i0 ij j

i j=1

y(x)= w A w + w x

D

1

i

. . .

D

1

j

M1

. . .

11w

ijw

1 jw. . .
. . .

k

. . .

1jw

D+1

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Neural Network Training

29

idea: using the “training events” adjust the weights such, that

 y(x)0 for background events

 y(x)1 for signal events

how do we adjust ?

minimize Loss function:

events

2

i

i

L(w) (y(x) y(C)) - where C

1for C = signal
y =

0 for C = backgr.

 y(x): very “wiggly” function many local minima.

one global overall fit not efficient/reliable

back propagation (learn from experience, gradually adjust your resonse)

online learning (update event by event)

batch learning (update after seeing the whole sample)

i.e. use usual “sum of squares” or

misclassification error

true

event type

predicted

 event type

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Neural Network Training

back-propagation

30

 i0 ij j

j=1

= y(x) - y(C) A w + w x

0i

L

w

D∂

∂

 start with random weights

adjust weights in each step steepest descend of the “Loss”- function L

early stopping: traditional way to avoid overtraining

there are also other “regularisation”

2

iL(w) (y(x) y(C)) -n 1 nw w learning rate wL(w) =

 for weights connected to output nodes

M

0i i0 ij j

i j=1

y(x)= w A w + w x

D

 for weights not connected to output nodes

… a bit more complicated formula

note: all these gradients are easily calculated from the training event

 training is repeated n-times over the whole training data sample. how often ??

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Overtraining

31

S

B

x1

x2
S

B

x1

x2

 training: n-times over all training data how often ??

 it seems intuitive that this boundary will give better results in another

statistically independent data set than that one

e.g. stop training before you learn

statistical fluctuations in the data

verify on independent “test” sample

training cycles

c
la

s
s
if
ic

a
io

n
 e

rr
o
r

training sample

test sample possible overtraining is concern for

every “tunable parameter” a of

classifiers: Smoothing parameter,

n-nodes…
a

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Boosted Decision Trees

32

 Decision Tree: Sequential application of cuts splits

the data into nodes, where the final nodes (leafs)

classify an event as signal or background

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Boosted Decision Trees

33

 Decision Tree: Sequential application of cuts splits

the data into nodes, where the final nodes (leafs)

classify an event as signal or background

 Boosted Decision Trees (1996):
combine a whole forest of Decision Trees,

derived from the same sample, e.g. using

different event weights.

 overcomes the stability problem

 increases performance

 became popular in HEP since

MiniBooNE, B.Roe et.a., NIM 543(2005)

 Each branch one standard “cut” sequence

 easy to interpret, visualised

 independent of monotonous variable
transformations, immune against outliers

 weak variables are ignored (and don’t
(much) deteriorate performance)

 Disadvatage very sensitive to statistical
fluctuations in training data

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Boosting

34

Training Sample
classifier

C(0)(x)

Weighted

Sample

re-weight

classifier

C(1)(x)

Weighted

Sample

re-weight

classifier

C(2)(x)

Weighted

Sample

re-weight

Weighted

Sample

re-weight

classifier

C(3)(x)

classifier

C(m)(x)

ClassifierN
(i)

i

i

y(x) w C (x)

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Adaptive Boosting (AdaBoost)

35

Training Sample
classifier

C(0)(x)

Weighted

Sample

re-weight

classifier

C(1)(x)

Weighted

Sample

re-weight

classifier

C(2)(x)

Weighted

Sample

re-weight

Weighted

Sample

re-weight

classifier

C(3)(x)

classifier

C(m)(x)

err

err

err

1 f
with :

f

misclassified events
f

all events

-

ClassifierN (i)
(i)err

(i)
i err

1 f
y(x) log C (x)

f

 -

 AdaBoost re-weights events

misclassified by previous classifier by:

 AdaBoost weights the classifiers also

using the error rate of the individual

classifier according to:

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

AdaBoost: A simple demonstration

36

The example: (somewhat artificial…but nice for demonstration) :

• Data file with three “bumps”

• Weak classifier (i.e. one single simple “cut” ↔ decision tree stumps)

B S

var(i) > x var(i) <= x

a) Var0 > 0.5 εsig=66% εbkg ≈ 0% misclassified events in total 16.5%

or

b) Var0 < -0.5 εsig=33% εbkg ≈ 0% misclassified events in total 33%

the training of a single decision tree stump will find “cut a)”

a) b)

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

AdaBoost: A simple demonstration

37

The first “tree”, choosing cut a) will give an error fraction: err = 0.165

.. and hence will

chose: “cut b)”:

Var0 < -0.5

b)

The combined classifier: Tree1 + Tree2

the (weighted) average of the response to

a test event from both trees is able to

separate signal from background as

good as one would expect from the most

powerful classifier

 before building the next “tree”: weight wrong classified training events by (1-err/err)) ≈ 5

 the next “tree” sees essentially the following data sample:

re-weight

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Bagging and Randomised Trees

38

Bagging:

 combine trees grown from “bootstrap” samples

(i.e re-sample training data with replacement)

Randomised Trees: (Random Forest: trademark L.Breiman, A.Cutler)

 combine trees grown with:

 random bootstrap (or subsets) of the training data only

 consider at each node only a random subsets of variables for

the split

 NO Pruning (despite possibly larger trees than AdaBoost) !

 or any “combination” of Bagging/Randomising/Boosting

These combined classifiers work surprisingly well, are very

stable and almost perfect “out of the box” classifiers

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

General Advice for (MVA) Analyses

39

 There is no magic in MVA-Methods:

no need to be too afraid of “black boxes” they are not sooo hard to understand

you typically still need to make careful tuning and do some “hard work”

no “artificial intelligence” … just “fitting decision boundaries” in a given model

 The most important thing at the start is finding good observables

good separation power between S and B

little correlations amongst each other

no correlation with the parameters you try to measure in your signal sample!

 Think also about possible combination of variables

this may allow you to eliminate correlations

 rem.: you are MUCH more intelligent than what the algorithm will do

 Apply pure preselection cuts and let the MVA only do the difficult part.

 “Sharp features should be avoided” numerical problems, loss of

information when binning is applied

simple variable transformations (i.e. log(variable)) can often smooth out these areas

and allow signal and background differences to appear in a clearer way

 Treat regions in the detector that have different features “independent”

can introduce correlations where otherwise the variables would be uncorrelated!

MVA and Systematic Uncertainties

40

Multivariate Classifiers THEMSELVES don’t have systematic uncertainties

 even if trained on a “phantasy Monte Carlo sample”

 there are only “bad” and “good” performing classifiers !

 OVERTRAINING is NOT a systematic uncertainty !!

 difference between two classifiers resulting from two different training

runs DO NOT CAUSE SYSTEMATIC ERRORS

 same as with “well” and “badly” tuned classical cuts

MVA classifiers: only select a region(s) in observable space

 Efficiency estimate (Monte Carlo) statistical/systematic uncertainty

 involves “estimating” (uncertainties in) distribution of 𝑃𝐷𝐹𝑦𝑆(𝐵)

 statistical “fluctuations” re-sampling (Bootstrap)

 “smear/shift/change” input distributions and determine 𝑃𝐷𝐹𝑦𝑆(𝐵)

 estimate systematic error/uncertainty on efficiencies

 Only involves “test” sample… systematic uncertainties have nothing to do

with the training !!

MVA and Systematic Uncertainties

minimize “systematic” uncertainties

 “classical cuts” : do not cut near steep edges, or in regions of large sys.

uncertainty

 hard to “translate”: try to:

 artificially degrade discriminative power (shifting/smearing) of systematically

“uncertain” observables IN THE TRAINING

 Don’t be afraid of correlations!

 typically “kinematically generated” easily modeled correctly

 “classical cuts” are also affected by “wrongly modeled correlations”

 MVA method let’s you spot this

 look at “projections” of input variables

 + the combined MVA test statistic “y(x)” !

Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012 41

Summary
Multivariate Classifiers (Regressors) 1 dimensional test statistic

y(x) and y(x)>c defines decision boundary

Mulit-dimensional (and projective) Likelihood

estimate the PDF and exploint Neyman-Pearsons Lemma: best test

statistic is the Likelihood ratio

 Other classifiers “fit” a decision boundary “model”

Linear: Linear Classifier (e.g. Fisher Discriminant)

Non-Linear

 Neural Network

 Boosted Decision Trees

 (Support Vector Machines) very nice but hard to explain in 5min…

 No “magic” or “intelligence” … just fitting !

 Once one understands what “they are” you know

systematic uncertainties don’t lie in the training !!

estimate them similar as you’d do in classical cuts

Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012 42

Backup and Left overs…

Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012 43

Growing a Decision Tree

44

 training sample at the root node

 split training sample into two

variable and cut with best separation gain

 continue splitting until:

 minimal #events per node

 maximum number of nodes

 maximum depth specified

 (a split doesn’t give a minimum separation gain)

 not a good idea see “chessboard”

 Decision trees: grow large tree and then

‘prune’

 Boosted Decision tree: early stopping

 leaf-nodes classify S,B according to the

majority of events or give a S/B probability

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

“A Statistical View of Boosting”

(Friedman 1998 et.al)

45

Abstract:

 …. For the two-class problem, boosting can be viewed as an approximation to additive modeling on the logistic scale

using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit

nearly identical results to boosting. Direct multi-class generalizations based on multinomial likelihood are derived that

exhibit performance comparable to other recently proposed multi-class ….

Boosted Decision Trees: two different interpretations

 give events that are “difficult to categorize” more weight and average afterwords the

results of all classifiers that were obtained with different weights

 see each Tree as a “basis function” of a possible classifier

• boosting or bagging is just a mean to generate a set of “basis funciton”

• linear combination of basis functions gives final classifier or: final classifier is an

expansion in the basis functions.

• every “boosting” algorithm can be interpreted as optimising in a “greedy stagewise”

manner (i.e. from the current point in the optimisation –e.g.building of the decision tree

forest- one chooses the parameters for the next boost step (weights) such that one

moves a long the steepest gradient of the loss function)

• AdaBoost: “exponential loss function” = exp(-y0y(α,x)) where y0=-1 (bkg), y0=1 (signal)

i i

tree

y(,x) T(x)a a

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Gradient Boost

46

 Gradient Boost is a way to implement “boosting” with arbitrary “loss functions” by

approximating “somehow” the gradient of the loss function

 AdaBoost: Exponential loss exp(-y0y(α,x)) theoretically sensitive to outliers

 Binomial log-likelihood loss ln(1 + exp(-2y0y(α,x)) more well behaved loss function,

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Support Vector Machines

47 Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

 Neural Networks are complicated by finding the proper

optimum “weights” for best separation power by “wiggly”

functional behaviour of the piecewise defined separating

hyperplane

 KNN (multidimensional likelihood) suffers disadvantage that

calculating the MVA-output of each test event involves

evaluation of ALL training events

 If Boosted Decision Trees in theory are always weaker than a

perfect Neural Network

Support Vector Machine

48

 There are methods to create linear decision boundaries using only measures of

distances (= inner (scalar) products)

 leads to quadratic optimisation problem

 The decision boundary in the end is defined only by training events that are

closest to the boundary

 suitable variable transformations into a higher dimensional space may allow

separation with linear decision boundaries non linear problems

 Support Vector Machine

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Support Vector Machines

49

x1

x2

margin

support

vectors

S
e
p
a

ra
b
le

 d
a
ta

 hyperplane that separates S from B

 Linear decision boundary

 Best separation: maximum distance (margin)

between closest events (support) to hyperplane

N
o
n

-s
e
p
a
ra

b
le

 d
a
ta

 Solution of largest margin depends only on

inner product of support vectors (distances)

 quadratic minimisation problem

1

2

4

3 If data non-separable add misclassification cost

parameter C·ii to minimisation function

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Support Vector Machines

50

 Non-linear cases:
 Transform variables into higher dimensional feature space where again a linear

boundary (hyperplane) can separate the data

(x1,x2) S
e
p
a

ra
b
le

 d
a
ta

N

o
n
-s

e
p

a
ra

b
le

 d
a

ta

 hyperplane that separates S from B

 Linear decision boundary

 Best separation: maximum distance (margin)

between closest events (support) to hyperplane

 largest margin - inner product of support vectors

(distances) quadratic minimisation problem

 If data non-separable add misclassification cost

parameter C·ii to minimisation function

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Support Vector Machines

51

x1

x2

x1

x3

x1

x2

 Non-linear cases:

Kernel size paramter typically needs careful tuning! (Overtraining!)

 non linear variable transformation linear separation in transformed feature space

 no explicit transformation specified Only its “scalar product” x·x Ф(x)·Ф(x) needed.

 certain Kernel Functions can be interpreted as scalar products between transformed

vectors in the higher dimensional feature space. e.g.: Gaussian, Polynomial, Sigmoid

 Choose Kernel and fit the hyperplane using the linear techniques developed above

(x1,x2) S
e
p
a

ra
b
le

 d
a
ta

N

o
n
-s

e
p

a
ra

b
le

 d
a
ta

 Find hyperplane that best separates signal

from background

 Linear decision boundary

 Best separation: maximum distance (margin)

between closest events (support) to hyperplane

 largest margin - inner product of support vectors

(distances) quadratic minimisation problem

 If data non-separable add misclassification cost

parameter C·ii to minimisation function

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Support Vector Machines

52

 How does this “Kernel” business work?

 Kernel function == scalar product in “some transformed” variable space

 standard: 𝑥 ∙ 𝑦 = ∑𝑥𝑖𝑦𝑖 = 𝑥 𝑦 ∗ 𝑐𝑜𝑠(𝜃)

 large if : 𝑥 ∙ 𝑦 are in the same “direction”

 zero if : 𝑥 ∙ 𝑦 are orthogonal (i.e. point along different axes / dimension)

 e.g. Gauss kernel: Φ 𝑥 ∙ Φ 𝑦 = 𝐾 𝑥 , 𝑦 = 𝑒𝑥𝑝(−
𝑥 −𝑦 2

2𝜎2)

 zero if ponts: 𝑥 𝑎𝑛𝑑 𝑦 “far apart” in original data space

 large only in “vicinity” of each other

 𝜎 < distance between training data points:

 each data point is “lifted” into its “own” dimension

 full separation of “any” event configuration with decision boundary along

coordinate axis

 well, that would of course be: overtraining
Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Support Vector Machines

53

SVM: the Kernel size parameter:

example: Gaussian Kernels

 Kernel size (s of the Gaussian) choosen

too large: not enough “flexibility” in the

underlying transformation

 Kernel size (s of the Gaussian) choosen

propperly for the given problem

colour code:

Red large signal

probability:

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

What if there are correlations?

54 Helge Voss

Typically correlations are present: Cij=cov[xi , x j]=E[xi xj]−E[xi]E[xj]≠0 (i≠j)

 pre-processing: choose set of linear transformed input variables for which Cij = 0 (i≠j)

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

Decorrelation

55 Helge Voss

Attention: eliminates only linear correlations!!

 Determine square-root C of correlation matrix C, i.e., C = C C

compute C by diagonalising C:

 transformation from original (x) in de-correlated variable space (x) by: x = C -1x

 T TD S SSSC C D

 Find variable transformation that diagonalises the covariance matrix

Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012

