Fundamental Concepts in Particle Phusics

Lecture 2 :
Towards gauge theories

Géraldine SERVANT
CERN-Th

Some textbooks

Introductory textbooks:

-Introduction to High Energy Physics, 4th edition, D. Perkins (Cambridge)
-Introduction to Elementary particles, 2nd edition, D.Griffiths (Wiley)

Introduction to Quantum Field Theory:

-A Modern Introduction to Quantum Field Theory, Michele Maggiore (Oxford series)
-An Introduction to Quantum Field Theory, Peskin and Schroder (Addison Wesley)

In french:
-Théorie Quantique des Champs, Jean-Pierre Derendinger
(Presses polytechniques et universitaires romandes)

Symmetries

I- Continuous global space-time (Poincaré) symmetries all particles have (m, s) -> energy, momentum, angular momentum conserved

II- Global (continuous) internal symmetries
-> B, L conserved (accidental symmetries)

III- Local or gauge internal symmetries
-> color, electric charge conserved $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

IV- Discrete symmetries $\quad \rightarrow$ CPT

Why Quantum Field theory (QFT)

A few comments on slides \#20 and \#21 of 1st lecture

$$
\begin{array}{lr}
\left(i \hbar \frac{\partial}{\partial t}+\frac{\hbar^{2}}{2 m} \Delta-V\right) \Phi=0 & \text { Schrodinger equat } \\
\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\Delta+\frac{m^{2} c^{2}}{\hbar^{2}}\right) \Phi=0 & \text { Klein Gordon equat } \\
\left(i \gamma^{\mu} \partial_{\mu}-\frac{m c}{\hbar}\right) \Psi=0 & \text { Dirac equation }
\end{array}
$$

Wave equations, relativistic or not, cannot account for processes in which the number and type of particles change.

We need to change viewpoint, from wave equation where one quantizes a single particle in an external classical potential to QFT where one identifies the particles with the modes of a field and quantize the field itself (second quantization).

Classical Field theory

classical mechanics \& lagrangian formalism
action principle
$\begin{aligned} & \begin{array}{l}\text { determines classical } \\ \text { trajectory: }\end{array} \\ & \text { drtand }\end{aligned} \quad \frac{\partial \mathcal{L}}{\partial q_{i}}-\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}=0$
conjugate momenta $\quad p_{i}=\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \quad$ hamiltonian $\quad H(p, q)=\sum_{i} p_{i} \dot{q}_{i}-\mathcal{L}$
extend lagrangian formalism
to dynamics of fields $S=\int d^{4} x \mathcal{L}\left(\varphi, \partial_{\mu} \varphi\right)$

$$
\delta S=0 \quad->\quad \frac{\partial \mathcal{L}}{\partial \varphi_{i}}-\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi_{i}\right)}=0 \quad \partial_{0}=\frac{\partial}{\partial x^{0}}=\frac{\partial}{\partial t}
$$

conjugate momenta $\Pi_{i}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \varphi_{i}\right)}$
hamiltonian $H(x)=\sum_{i} \Pi_{i}(x) \partial_{0} \varphi_{i}(x)-\mathcal{L}$

Classical Field theory and Noether theorem

Invariance of action under continuous global transformation --->

There is a conserved current/charge

$$
\partial_{\mu} j^{\mu}=0 \quad Q=\int d^{3} x j^{0}(x, t)
$$

example of transformation:

$$
\varphi \rightarrow \varphi e^{i \alpha}
$$

$$
\left.{ }^{*}\right)
$$

$$
\begin{aligned}
& \delta \varphi=i \alpha \varphi \\
& \delta \varphi^{\prime}=i \alpha \varphi^{\prime}
\end{aligned}
$$

Scalar Field theory

Lorentz invariant action of a complex scalar field

$$
S=\int d^{4} x\left(\partial_{\mu} \varphi^{*} \partial^{\mu} \varphi-m^{2} \varphi^{*} \varphi\right)
$$

$$
\begin{aligned}
& \text { Euler-Lagrange } \\
& \text { equation leads to }
\end{aligned} \quad\left(\square+m^{2}\right) \varphi=0
$$

Klein-Gordon equation
with solution a superposition of plane waves:

$$
\varphi(x)=\int \frac{d^{3} p}{\left(2 \pi^{3}\right) \sqrt{2 E_{p}}}\left(a_{p} e^{-i p x}+b_{p}^{*} e^{i p x}\right)
$$

existence of a global U(1)

$$
\varphi(x) \rightarrow e^{i \theta} \varphi(x)
$$

conserved U(1) charge $Q_{U(1)}=\int d^{3} x j_{0} \quad j_{\mu}=i \varphi^{*} \overleftrightarrow{\partial}_{\mu} \varphi$

From first to second quantization

Basic Principle of Quantum Mechanics:

To quantize a classical system with coordinates q^{i} and momenta p^{i}, we promote q^{i} and p^{i} to operators and we impose $\left[q^{i}, p^{j}\right]=\delta^{i j}$
same principle can
be applied to scalar field theory
where $q^{i}(\dagger)$ are replaced by $\varphi(t, x)$ and $\mathrm{p}^{\prime}(\mathrm{t})$ are replaced by $\Pi(t, x)$
$\varphi_{\text {and }} \Pi$ are promoted to operators and we impose $[\varphi(t, x), \Pi(t, y)]=i \delta^{3}(x-y)$
Expand the complex field in plane waves:

$$
\varphi(x)=\int \frac{d^{3} p}{(2 \pi)^{3} \sqrt{2 E_{p}}}\left(a_{p} e^{-i p x}+b_{\mathrm{p}}^{\dagger} e^{i p x}\right)
$$

where a_{p} and b_{p}^{+}are promoted to operators
scalar field theory is a collection of harmonic oscillators destruction operator $a_{p} \left\lvert\, 0>=0 \begin{gathered}\text { defines the } \\ \text { vacuum state }\end{gathered}\right.$ a generic state is obtained by acting on the vacuum with the creation operators

$$
\left|p_{1} \ldots p_{n}>\equiv a_{p_{1}}^{\dagger} \ldots a_{p_{n}}^{\dagger}\right| 0>
$$

Scalar field quantization continued

$$
\mathcal{H}=\Pi \partial_{0} \varphi-\mathcal{L}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{E_{p}}{2}\left(a_{p}^{\dagger} a_{p}+b_{p}^{\dagger} b_{p}\right)
$$

the quanta of a complex scalar field are given
by two different particle species with same mass created by a^{+}and b^{+}respectively
The Klein Gordon action has a conserved $\mathrm{U}(1)$ charge due to invariance $\varphi(x) \rightarrow e^{i \theta} \varphi(x)$
$Q_{U(1)}=\int d^{3} x j^{0}=\int \frac{d^{3} p}{(2 \pi)^{3}}\left(a_{p}^{\dagger} a_{p}-b_{p}^{\dagger} b_{p}\right)$
2 different kinds of quanta: each particle has its antiparticle which has the same mass but opposite $U(1)$ charge

Field quantization provides a proper interpretation of "E<O solutions"

$$
\varphi(x)=\int \frac{d^{3} p}{(2 \pi)^{3} \sqrt{2 E_{p}}}\left(a_{p} e^{-i p x}+b_{\mathbf{p}}^{\dagger} e^{i p x}\right)
$$

coefficient of the positive energy solution $e^{-i p x}$ becomes after quantization the destruction operator of a particle while the coefficient of the $e^{i p x}$ becomes the creation operator of its antiparticle

$$
a_{p}^{+} \mid 0>\text { and } b_{p}^{+} \mid 0>\text { represent particles with opposite charges }
$$

Similarly, we are led to quantize:

Spinor fields Ψ

Lorentz invariant lagrangian $\quad \mathcal{L}=\bar{\Psi}(i \partial \gamma-m) \Psi \quad \not \partial=\gamma^{\mu} \partial_{\mu}$

Dirac equation

$$
(i \not \partial-m) \Psi=0
$$

fermions: $\rightarrow \underset{\text { anticommutation }}{\text { relations }} \boldsymbol{a}\left\{\Psi_{a}(x, t), \Psi_{b}^{\dagger}(y, t)\right\}=\delta^{(3)}(x-y) \delta_{a b}$

The electromagnetic field A_{μ}.

Lorentz inv. lagrangian
Maxwell eq.

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \quad \text { where } \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \\
& \partial_{\mu} F_{\mu \nu}=0
\end{aligned}
$$

Maxwell lagrangian inv. under

$$
A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \theta
$$

Summary of procedure for building a QFT

- Kinetic term of actions are derived from requirement of Poincaré invariance
- Promote field \& its conjugate to operators and impose (anti) commutation relation
- Expanding field in plane waves, coefficients a_{p}, a_{p}^{+}become operators
- The space of states describes multiparticle states
a_{p} destroys a particle with momentum p while a_{p}^{+}creates it

$$
\text { e.g }\left|p_{1} \ldots p_{n}>\equiv a_{p_{1}}^{\dagger} \ldots a_{p_{n}}^{\dagger}\right| 0>
$$

crucial aspect of QFT: transition amplitudes between different states describe processes in which the number and type of particles changes

Gauge transformation and the Dirac action

Consider the transformation

$$
\Psi \rightarrow e^{i q \theta} \Psi
$$

U(1) transformation it is a symmetry of the free Dirac action $\quad \mathcal{L}=\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi ~$
if θ is constant no longer a symmetry if $\theta=\theta(x)$
However, the following action is invariant under

$$
\left\{\begin{array}{l}
\Psi \rightarrow e^{i q \theta} \Psi \\
A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \theta
\end{array}\right.
$$

$\mathcal{L}=\bar{\Psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \Psi$
where

We have gauged a global $U(1)$ symmetry, promoting it to a local symmetry

The result is a gauge theory and A_{μ} is the gauge field
conserved current: $\quad j^{\mu}=\bar{\Psi} \gamma^{\mu} \Psi$
conserved charge: $\quad Q=\int d^{3} x \bar{\Psi} \gamma^{0} \Psi=\int d^{3} x \Psi^{\dagger} \Psi \rightarrow$ electric charge

$\mathcal{L}=\bar{\Psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \Psi$ where $D_{\mu} \Psi=\left(\partial_{\mu}+i q A_{\mu}\right) \Psi$

$$
\mathcal{L}=\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi-q A_{\mu} \bar{\Psi} \gamma^{\mu} \Psi
$$

Coupling of the gauge field A_{μ} to the current $j^{\mu}=\bar{\Psi} \gamma^{\mu} \Psi$

From Quantum Electrodynamics to the electroweak theory

These transformations are

$$
\Psi \rightarrow e^{i q \theta} \Psi
$$

In the electroweak theory, more complicated transformations, belonging to the $S U(2)$ group are involved

$$
\Psi \rightarrow \exp (i g \tau . \lambda) \Psi
$$

where $\tau=\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$ are three $2 * 2$ matrices

Generalization to $S U(N)$
$\mathrm{N}^{2}-1$ generators
($\mathrm{N} \times \mathrm{N}$ matrices)

$$
\begin{aligned}
& \Psi(x) \rightarrow U(x) \Psi(x) \\
& U(x)=e^{i g \theta^{a}(x) T^{a}} \\
& A_{\mu}(x) \rightarrow U A_{\mu} U^{\dagger}-\frac{i}{g}\left(\partial_{\mu} U\right) U^{\dagger}
\end{aligned}
$$

Gauge theories: Electromagnetism (EM) \& Yang-Mills

$\mathrm{EMU(1)} \quad \phi \rightarrow e^{i \alpha} \phi \quad$ but $\quad \partial_{\mu} \phi \rightarrow e^{i \alpha}\left(\partial_{\mu} \phi\right)+\underbrace{\forall 0 \text { if local transformations }} i\left(\partial_{\mu} \alpha\right) \phi$
EM field and covariant derivative

$$
\partial_{\mu} \phi+i e A_{\mu} \phi \rightarrow e^{i \alpha}\left(\partial_{\mu} \phi+i e A_{\mu} \phi\right)
$$

the EM field keep track of the phase in

$$
\text { if } \quad A_{\mu} \rightarrow A_{\mu}-\frac{1}{e} \partial_{\mu} \alpha
$$ different points of the space-time

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

Yang-Mills : non-abelian transformations

$$
\partial_{\mu} \phi+i g A_{\mu} \phi \rightarrow U\left(\partial_{\mu} \phi+i g A_{\mu} \phi\right) \quad \text { if } \quad A_{\mu} \rightarrow U A_{\mu} U^{-1}-\frac{i}{g} U \partial_{\mu} U^{-1}
$$

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\underbrace{i g\left[A_{\mu}, A_{\nu}\right]}_{\text {non-abelian int. }}
$$

The Standard Model: matter

the elementary blocks:

The Standard Model : interactions

$\stackrel{U(1)_{Y}}{\Sigma}$ $0 S U(2)_{L}$
weak interactions bosons $W^{ \pm}, Z^{0}$

Photon

electromagnetic interactions

 $\stackrel{y}{2}$
$0 S U(3)$ strong interactions

$\left\{\begin{array}{l}\text { light } \\ \text { atoms } \\ \text { molecules }\end{array}\right.$

$n \xrightarrow{W^{ \pm}} p+e^{-}+\bar{\nu}_{e}$
atomic nuclei
α decay
${ }_{92}^{232} U \rightarrow{ }_{90}^{234} \mathrm{Th}+{ }_{2}^{4} \mathrm{He}$

Interactions between particles

Elementary particles interact with each other by exchanging gauge bosons

The beauty of the SM comes from the the identification of a unique dynamical principle describing interactions that seem so different from each others
gauge theory = spin-1

The most general lagrangian given the particle content

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{4 g^{\prime 2}} B_{\mu \nu} B^{\mu \nu}-\frac{1}{4 g^{2}} W_{\mu \nu}^{a} W^{a \mu \nu}-\frac{1}{4 g_{s}^{2}} G_{\mu \nu}^{a} G^{a \mu \nu} \\
& +\bar{Q}_{i} i D D Q_{i}+\bar{u}_{i} i \not D u_{i}+\bar{d}_{i} i \not D d_{i}+\bar{L}_{i} i \not D L_{i}+\bar{e}_{i} i \not D e_{i} \\
& +Y_{u}^{i j} \bar{Q}_{i} u_{j} \tilde{H}+Y_{d}^{i j} \bar{Q}_{i} d_{j} H+Y_{l}^{i j} \bar{L}_{i} e_{j} H+\left|D_{\mu} H\right|^{2} \\
& -\lambda\left(H^{\dagger} H\right)^{2}+\lambda v^{2} H^{\dagger} H+\frac{\theta}{64 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} G_{\mu \nu}^{a} G_{\rho \sigma}^{a}
\end{aligned}
$$

What about baryon and lepton numbers? -> accidental symmetries!

