Fundamental Concepts in Particle Phusics

Lecture 3 :
Towards the Standard Model

Géraldine SERVANT
CERN-Th

Abelian versus non-abelian gauge theories

The (Yang-Mills) action $\quad \mathcal{L}_{Y M}=\bar{\Psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \Psi-\frac{1}{2} F_{\mu \nu} F^{\mu \nu} \quad$ is invariant under $\Psi(x) \rightarrow U(x) \Psi(x)$

Abelian U(1) symmetry
$U(x)=e^{i q \theta(x)}$

Non-abelian $\operatorname{SU}(\mathrm{N})$

$$
U(x)=e^{i g \theta^{a}(x) T^{a}}
$$

$\mathrm{T}^{a}: \mathrm{N}^{2}-1$ generators ($\mathrm{N} \times \mathrm{N}$ matrices) acting on

$$
A_{\mu}(x)=A_{\mu}^{a} T^{a}
$$

$$
A_{\mu}(x) \rightarrow A_{\mu}+\underbrace{\frac{i}{e}}(\underbrace{}_{\text {coupling constants }} \underbrace{\left.\partial_{\mu} U\right)} U^{\dagger} \quad A_{\mu}(x) \rightarrow U A_{\mu} U^{\dagger}-\frac{i}{g}\left(\partial_{\mu} U\right) U^{\dagger}
$$

$$
\begin{aligned}
& \underset{\text { infinitesimal }}{\text { transformation }} \\
& A_{\mu}^{a}(x) \longrightarrow A_{\mu}^{a}+\partial_{\mu} \theta^{a}-g f^{a b c} \theta^{b} A_{\mu}^{c}
\end{aligned}
$$

$D_{\mu} \Psi=\left(\partial_{\mu}+i q A_{\mu}\right)$

$$
D_{\mu} \Psi=\left(\partial_{\mu}-i g A_{\mu}^{a} T^{a}\right)
$$

The gauge symmetries of the Standard Model

Gauge Group $U(1)_{Y} \quad$ (abelian)

$$
\begin{aligned}
& \psi^{\prime}=e^{+i Y \alpha_{Y}} \psi \\
& B_{\mu}^{\prime}=B_{\mu}-\frac{1}{g^{\prime}} \partial_{\mu} \alpha_{Y} \\
& B_{\mu \nu}=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu} \\
& D_{\mu} \psi_{R}=\left(\partial_{\mu}+i g^{\prime} Y B_{\mu}\right) \psi_{R}
\end{aligned}
$$

Gauge Group $S U(2)_{L}$ acts on the two components of a doublet $\Psi_{L}=\left(u_{L}, d_{L}\right)$ or $\left(\nu_{L}, e_{L}\right)$

$$
\begin{array}{ll}
\Psi_{L} \rightarrow e^{-i T^{a} \alpha^{a}} \psi_{L} & U=e^{-i T^{a} \alpha^{a}}
\end{array} T^{a}=\sigma^{a} / 2 \quad \text { Pauli matrices }, ~\left(\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=-i\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right.
$$

Gauge Group $S U(3)_{c} \quad q=\left(q_{1}, q_{2}, q_{3}\right)$ (the three color degrees of freedom)

$$
\begin{array}{lc}
q \rightarrow e^{-i T^{a} \alpha^{a}} q & U=e^{-i T^{a} \alpha^{a}} \\
G_{\mu}^{a} T^{a} \rightarrow U G_{\mu}^{a} T^{a} U^{-1}-\frac{i}{g} \partial_{\mu} U U^{-1} & {\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}} \\
\lambda_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
G_{\mu \nu}^{a}=\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}+g f^{a b c} G_{\mu}^{b} G_{\nu}^{c}, \quad a=1, \ldots, 8 & \lambda_{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \quad \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \quad \lambda_{6}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
D_{\mu} q=\left(\partial_{\mu}-i g G_{\mu}^{a} T^{a}\right) q & \lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{array}
$$

Gauge Group $U(1)_{Y} \quad$ (abelian)

$$
\begin{aligned}
& \psi^{\prime}=e^{+i Y \alpha_{Y}} \psi \\
& B_{\mu}^{\prime}=B_{\mu}-\frac{1}{g^{\prime}} \partial_{\mu} \alpha_{Y} \\
& B_{\mu \nu}=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu} \\
& D_{\mu} \psi_{R}=\left(\partial_{\mu}+i g^{\prime} Y B_{\mu}\right) \psi_{R}
\end{aligned}
$$

Gauge Group $S U(2)_{L}$

$$
\begin{aligned}
& \Psi_{L} \rightarrow e^{-i T^{a} \alpha^{a}} \psi_{L} \quad U=e^{-i T^{a} \alpha^{a}} \\
& W_{\mu \nu}^{a}=\partial_{\mu} W_{\nu}^{a}-\partial_{\nu} W_{\mu}^{a}+g \epsilon^{a b c} W_{\mu}^{b} W_{\nu}^{c}, \quad a=1, \ldots, 3 \\
& D_{\mu} \psi_{L}=\left(\partial_{\mu}-i g W_{\mu}^{a} T^{a}\right) \psi_{L}
\end{aligned}
$$

Gauge Group $S U(3)_{c}$

$$
\begin{aligned}
& q \rightarrow e^{-i T^{a} \alpha^{a}} q \quad U=e^{-i T^{a} \alpha^{a}} \\
& G_{\mu}^{a} T^{a} \rightarrow U G_{\mu}^{a} T^{a} U^{-1}-\frac{i}{g} \partial_{\mu} U U^{-1} \\
& G_{\mu \nu}^{a}=\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}+g f^{a b c} G_{\mu}^{b} G_{\nu}^{c}, \quad a=1, \ldots, 8 \\
& D_{\mu} q=\left(\partial_{\mu}-i g G_{\mu}^{a} T^{a}\right) q
\end{aligned}
$$

$$
\mathcal{L}_{Y M}=\bar{\Psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \Psi-\frac{1}{2} F_{\mu \nu} F^{\mu \nu}
$$

all Standard Model fermions carry $U(1)$ charge

$$
\Psi_{L}=\left(u_{L}, d_{L}\right) \text { or }\left(\nu_{L}, e_{L}\right)
$$

only left-handed fermions charged under it -> chiral interactions

$$
q=\left(q_{1}, q_{2}, q_{3}\right)
$$

all quarks transform under it
-> vector-like interactions

The lagrangian of the Standard Model

$\mathcal{L}_{\text {gauge }}=-\frac{1}{4} G_{\mu \nu}^{a} G^{a \mu \nu}-\frac{1}{4} W_{\mu \nu}^{a} W^{a \mu \nu}-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}$
describe massless gauge bosons
$\mathcal{L}_{\text {Fermion }}=\sum_{\text {quarks }} i \bar{q} \gamma^{\mu} D_{\mu} q+\sum_{\psi_{L}} i \overline{\psi_{L}} \gamma^{\mu} D_{\mu} \psi_{L}+\sum_{\psi_{R}} i \overline{\psi_{R}} \gamma^{\mu} D_{\mu} \psi_{R}$
describe massless fermions and their $\begin{gathered}\text { only left-handed } \\ \text { fermions }\end{gathered}$
$\begin{gathered}\text { all fermions carrying a } \cup(1) y \text { charge } \\ \text { i.e. all Standard Model fermions }\end{gathered}$
$\mathcal{L}_{\text {Higgs }}=\left(D_{\mu} \Phi\right)^{\dagger} D_{\mu} \Phi+\mu^{2} \Phi^{\dagger} \Phi-\lambda\left(\Phi^{\dagger} \Phi\right)^{2} \longrightarrow \begin{gathered}\text { gives mass to EW } \\ \text { gauge bosons }\end{gathered} \frac{1}{2} M_{Z}^{2} Z_{\mu} Z^{\mu}+M_{W}^{2} W_{\mu}^{+} W^{-\mu}$
$D_{\mu} \Phi=\left[\partial_{\mu}-i \frac{g}{\sqrt{2}}\left(\tau^{+} W_{\mu}^{+}+\tau^{-} W_{\mu}^{-}\right)-i \frac{g}{2} \tau_{3} W_{\mu}^{3}+i \frac{g^{\prime}}{2} B_{\mu}\right] \Phi \quad$: covariant derivative of the Higgs H charged under $S U(2) \times U(1) y$
responsible for electroweak symmetry breaking!
$\mathcal{L}_{\text {Yukawa }}=-Y_{l} \bar{L} \Phi \ell_{R}-Y_{d} \bar{Q} \Phi d_{R}-Y_{u} \bar{Q} \tilde{\Phi} u_{R}+$ h.c. $\quad \longrightarrow$ gives mass to fermions $S U(3) \times S U(2)_{L} \times U(1)_{Y} \longrightarrow S U(3) \times U(1)_{e m}$
8 massless $\quad 3$ massive gauge bosons $\quad 8$ massless 1 massless photon γ gluons $\quad \mathbf{W}^{+} \mathbf{W}^{-} \mathrm{Z}_{0}$
gluons remaining unbroken symmetry

The W and Z bosons interact with the Higgs medium, the γ doesn't.

$$
\mathcal{L}_{\text {gauge }}=-\frac{1}{4} G_{\mu \nu}^{a} G^{a \mu \nu}-\frac{1}{4} W_{\mu \nu}^{a} W^{a \mu \nu}-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}
$$

$$
S U(3)_{c}
$$

$G_{\mu \nu}^{a}=\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}+g f^{a b c} G_{\mu}^{b} G_{\nu}^{c}$
$S U(2)_{L}$
$U(1)_{Y}$

$$
W_{\mu \nu}^{a}=\partial_{\mu} W_{\nu}^{a}-\partial_{\nu} W_{\mu}^{a}+g \epsilon^{a b c} W_{\mu}^{b} W_{\nu}^{c}, \quad B_{\mu \nu}=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}
$$

in mass eigen state basis

$$
\begin{array}{ll}
W_{\mu}^{ \pm}=\frac{W_{\mu}^{1} \mp i W_{\mu}^{2}}{\sqrt{2}} & Z_{\mu}=W_{\mu}^{3} \cos \theta_{W}+B_{\mu} \sin \theta_{W} \\
\cos \theta_{W}=g / \sqrt{g^{2}+g^{\prime 2}} & A_{\mu}=-W_{\mu}^{3} \sin \theta_{W}+B_{\mu} \cos \theta_{W} \\
\sin \theta_{W}=g^{\prime} / \sqrt{g^{2}+g^{\prime 2}}
\end{array}
$$

three gauge boson vertex

The Stantaurd Moale of Partide Prusicis

- one century to develop it
- tested with impressive precision
- accounts for all data in experimental particle physics

Forces

EW unification

Background

The Higgs was the only remaining unobserved piece and is a portal to new physics hidden sectors

The (adhoc) Higgs Mechanism (a model without dynamics)
EW symmetry breaking is described by the condensation of a scalar field

The Higgs selects a vacuum state by developing a non zero background value. When it does so, it gives mass to SM particles it couples to.

$$
V(\Phi)=\frac{\mu^{2}}{2} \Phi^{\dagger} \Phi+\frac{\lambda}{4} \Phi^{\dagger} \Phi
$$

Why is μ^{2} negative ?
the puzzle:
We do not know what makes the Higgs condensate.
We ARRANGE the Higgs potential so that the Higgs condensates but this is just a parametrization that we are unable to explain dynamically.

Historically

Fermi Lheory (paper rejected by Nature: declared too speculative!)
$n \xrightarrow{W^{ \pm}} p+e^{-}+\bar{\nu}_{e}$
$\mathcal{L}=G_{\mathcal{F}}(\bar{n} p)\left(\bar{\nu}_{e} e\right)$
$\mathcal{A} \propto G_{\mathcal{F}} E^{2}$
O no continuous limit
O inconsistent above 300 GeV
Gauge theory
microscopic theory
(exchange of a massive spin 1 particle)
$G_{\mathcal{F}}=\frac{\sqrt{2} g^{2}}{8 m_{W}^{2}} \quad \begin{aligned} & \text { exp: } m w=80.4 \mathrm{GeV} \\ & \mathrm{g} \approx 0.6, \text { ie, same order as } e=0.3\end{aligned}$ unification EM \& weak interactions

- We have quantized free fields
- We have introduced interactions
(particle creation and annihilation can only take place in theory with interactions)

We now would like to compute probability of processes like for instance a two-body decay $a->c+d$ or a two-body reaction $a+b->c+d$
"S-matrix approach"-> calculate probability of transition between two asymptotic states

The S-matrix

We consider a state $|a\rangle(t)$ which at an initial time t_{i} is labelled $\mid a>$.
Similarly we consider a state |b>(\dagger) which at a final time t_{f} is labelled |b>
At \dagger_{f} the state $\mid a>(\dagger)$ as evolved as $e^{-i H\left(t_{f}-t_{i}\right)} \mid a>$
where H is the hamiltonian of the theory
The amplitude for the process in which the initial state |a> evolves into the final state $\mid b>$ is given by

$$
\underset{\substack{\text { is a set of } \\ \text { particles } \\ \text { nteraction }}}{\mathcal{M}} \ll b\left|e_{\substack{\text { evolution operator } \\ \text { "S-matrix" }}}^{-i H\left(t_{f}-t_{i}\right)}\right|
$$

the initial state is either a oneparticle (decay) or two wellseparated particles (scattering), long before interaction happens
$\mid a>$ and $|b\rangle$ are both described by free fields
The probability of the process is given by $|\mathcal{M}|^{2}$ and that can be linked to a transition rate per volume unit as measured by an experiment

Link to observables

- cross section: reaction rate per target particle per unit incident flux
$\frac{[1 / \text { time }]}{\left[1 /\left(\text { time length }{ }^{2}\right)\right]}$
--> has units of a surface
measured in multiples of 1 barn $=10^{-24} \mathrm{~cm}^{2}$
typical relevant LHC cross sections \sim in pb

$$
1 \text { picobarn }=1 \mathrm{pb}=10^{-36} \mathrm{~cm}^{2}
$$

- Decay width (inverse of lifetime of a particle) =transition rate has dimension [1/time]
Example: decay width of EW gauge bosons
$\Gamma \propto|\mathcal{M}|^{2}$
scales as the square of the coupling constant

Z couplings to fermions

The coupling of \mathbf{Z} to any fermion is proportional to $I_{3}-\sin ^{2} \theta_{W} Q$ where $\quad I_{3}= \pm \frac{1}{2}$ is z-component of weak isospin and Q is electric charge

$$
\sin ^{2} \theta_{W}=0.231
$$

for the quarks:

u_{L}	$I_{3}=+1 / 2$	$Q=+2 / 3$
u_{R}	$I_{3}=0$	$Q=+2 / 3$
d_{L}	$I_{3}=-1 / 2$	$Q=-1 / 3$
d_{R}	$I_{3}=0$	$Q=-1 / 3$

and similarly for c, s, and b (\dagger is too heavy for the Z to decay into it)
for the leptons:
$\begin{array}{llr}e_{L} & I_{3}=-1 / 2 & Q=-1 \\ e_{R} & I_{3}=0 & Q=-1 \\ \nu_{e_{L}} & I_{3}=+1 / 2 & Q=0\end{array}$
and similarly for $\nu, \tau, \nu_{\mu}, \nu_{\tau}$

Branching fractions for Z decay

for the quarks:

$$
\begin{array}{ccc}
u_{L} & I_{3}=+1 / 2 & Q=+2 / 3 \\
u_{R} & I_{3}=0 & Q=+2 / 3 \\
d_{L} & I_{3}=-1 / 2 & Q=-1 / 3 \\
d_{R} & I_{3}=0 & Q=-1 / 3
\end{array}
$$

and similarly for c, s, and b (t is too heavy for the Z to decay into it)
for the leptons:
$e_{L} \quad I_{3}=-1 / 2 \quad Q=-1$
$e_{R} \quad I_{3}=0$
$Q=-1$
$\nu_{e_{L}}$
$I_{3}=+1 / 2$
$Q=0$
and similarly for $\nu, \tau, \nu_{\mu}, \nu_{\tau}$

The decay rate is proportional to the square of the coupling constant $I_{3}-\sin ^{2} \theta_{W} Q$ Also, for quarks, there is an additional factor $\left(1+\frac{\alpha_{s}}{2 \pi}\right)$ where $\alpha_{s}=g_{s}^{2} / 4 \pi=0.118$ due to the additional gluon emission

$$
\begin{gathered}
B\left(Z \rightarrow e^{+} e^{-}\right)=B\left(Z \rightarrow e_{L}^{+} e_{L}^{-}\right)+B\left(Z \rightarrow e_{R}^{+} e_{R}^{-}\right) \\
B\left(Z \rightarrow e_{L}^{+} e_{L}^{-}\right)=\frac{\Gamma\left(Z \rightarrow e_{L}^{+} e_{L}^{-}\right)}{\sum_{\text {all particles }} \Gamma(Z \rightarrow \text { particle, antiparticle })} \\
B(Z \rightarrow \nu \bar{\nu})=B\left(Z \rightarrow \nu_{e} \bar{\nu}_{e}\right)+B\left(Z \rightarrow \nu_{\mu} \bar{\nu}_{\mu}+B\left(Z \rightarrow \nu_{\tau} \bar{\nu}_{\tau}\right)\right. \\
=3 B\left(Z \rightarrow \nu_{e} \bar{\nu}_{e}\right)=20 \% \\
B\left(Z \rightarrow e^{+} e^{-}\right)=B\left(Z \rightarrow \mu^{+} \mu^{-}\right)=B\left(Z \rightarrow \tau^{+} \tau^{-}\right)=3.33 \% \\
B(Z \rightarrow \text { all hadrons })=3 \times[B(Z \rightarrow u \bar{u})+B(Z \rightarrow d \bar{d})+B(Z \rightarrow s \bar{s}) \\
\quad+B(Z \rightarrow c \bar{c})+B(Z \rightarrow b \bar{b})]=69.9 \%
\end{gathered}
$$

$$
\text { gluon } \underbrace{Z}_{\bar{q}}
$$

$$
\begin{aligned}
& W^{-} \rightarrow e^{-} \bar{\nu}_{e}, \mu^{-} \bar{\nu}_{\mu}, \tau^{-} \bar{\nu}_{\tau}, d^{\prime} \bar{u}, s^{\prime} \bar{c} . \\
& B R\left(W^{-} \rightarrow e^{-} \bar{\nu}_{e}\right)=B R\left(W^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right)=B R\left(W^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right) \\
& \quad=\frac{1}{3+6\left(1+\alpha_{s} / \pi\right)}=0.108, \\
& B R\left(W^{-} \rightarrow \text { hadrons }\right)=\frac{6\left(1+\alpha_{s} / \pi\right)}{3+6\left(1+\alpha_{s} / \pi\right)}=0.675 .
\end{aligned}
$$

The Standard Model

	Q	d	u	L	e	B	W	g	H
SU(3) C	3	3	3	1	1	I	I	8	\|
SU(2)L	2	I	1	2	1	1	3	1	2
$U(1) Y$	+1/6	-1/3	+2/3	-1/2	+1	0	0	0	$-1 / 2$
spin	-1/2	+1/2	+1/2	-1/2	+1/2	I	1	1	0
flavor	3	3	3	3	3	I	I	\|	\|

