

Detectors for Particle Physics

Scintillators and Gaseous detector

D. Bortoletto Purdue University

Tracking

- Particle detection has many aspects:
 - Particle counting
 - Particle Identification = measurement of mass and charge of the particle
 - Tracking

Charged particles are deflected by B fields such that:

$$\rho = \frac{p_T}{q|B|} = \frac{\gamma m_0 \beta c}{q|B|}$$

- By measuring the radius of curvature we can determine the momentum of a particle
- If we can measure also β independently we can determine the particle mass.

Signal creation

Charged particle traversing matter leave excited atoms, electron-ion pairs (gases) electrons-hole pairs (solids)

- Primary ionization
- Secondary ionization due to delta electron

- Excitation: The photons emitted by the excited atoms in transparent materials can be detected with photon detectors
- Ionization: By applying an electric field in the detector volume, the ionization electrons and ions can be collected on electrodes and readout

Scintillator detectors

D. Bortoletto Lecture 3

Scintillators

- dE/dx converted into visible light and then it is detected via photo-sensor (photomultipliers, SiPM,....)
- Emission of photons of by excited Atoms, typically UV- visible light.
 - Noble Gases and liquids (LAr, LXe...)
 - Inorganic Crystal (Nal, Csl...)
 - Largest light yield. Used for precision measurement of energetic Photons and in Nuclear Medicine.
 - Organic scintillatos

- Polyzyclic Hydrocarbons (Naphtalen, Anthrazen,)
- Large scale industrial production, mechanically and chemically robust.
- Typical light yield of scintillators
 - Energy in visible photons ≈ few % of the total energy Loss.
 - 1cm plastic scintillator, $\rho \approx 1$, dE/ dx=1.5 MeV, ~15 keV in photons; i.e. ~ 15 000 photons produced.

Inorganic scintillators

Scintillator material	Density [g/cm ³]	Refractive Index	Wavelength [nm] for max. emission	Decay time constant <mark>[µs]</mark>	Photons/MeV	
Nal	3.7	1.78	303	0.06	8·10 ⁴	
Nal(TI)	3.7	1.85	410	0.25	4·10 ⁴	
CsI(TI)	4.5	1.80	565	1.0	1.1·10 ⁴	
Bi ₄ Ge ₃ O ₁₂	7.1	2.15	480	0.30	2.8·10 ³	
CsF	4.1	1.48	390	0.003	2 ⋅ 10 ³	
LSO	7.4	1.82	420	0.04	1.4·10 ⁴	
PbWO ₄	8.3	1.82	420	0.006	2·10 ²	
LHe	0.1	1.02	390	0.01/1.6	2·10 ²	
LAr	1.4	1.29*	150	0.005/0.86	4·10 ⁴	
LXe	3.1	1.60*	150	0.003/0.02	4·10 ⁴	

* at 170 nm

Organic Scintillators

Scintillator material	Density [g/cm ³]	Refractive Index	Wavelength [nm] Decay time for max. emission constant [ns]		Photons/MeV	
Naphtalene	1.15	1.58	348 11		4 · 10³	
Antracene	1.25	1.59	448	30	4·10 ⁴	
p-Terphenyl	1.23	1.65	39 1	6-12	1.2.104	
NE102*	1.03	1.58	425	2.5	2.5·10 ⁴	
NE104*	1.03	1.58	405	1.8	2.4·10 ⁴	
NE110*	1.03	1.58	437	3.3	2.4·10 ⁴	
NE111*	1.03	1.58	370	1.7	2.3·10 ⁴	
BC400**	1.03	1.58	423	2.4	2.5 · 10 ²	
BC428**	1.03	1.58	480	12.5	2.2·10 ⁴	
BC443**	1.05	1.58	425	2.2	2.4·10 ⁴	

* Nuclear Enterprises, U.K.

** Bicron Corporation, USA

Scintillator comparison

Inorganic Scintillators

- Advantages
 - high light yield [typical; $\varepsilon_{sc} \approx 0.13$]
 - high density [e.g. PBWO₄: 8.3 g/cm³]
 - good energy resolution
- Disadvantages complicated crystal growth
- large temperature dependence
- Organic Scintillators
 - Advantages
 - very fast
 - easily shaped
 - small temperature dependence
 - pulse shape discrimination possible
 - Disadvantages
 - lower light yield [typical; $\varepsilon_{sc} \approx 0.03$]
 - radiation damage

Light yield $-\varepsilon_{sc} \equiv$ fraction of energy loss going into photons

EXPENSIVE

Scintillators

- Photons are being reflected towards the ends of the scintillator.
- A light guide brings the photons to the Photomultipliers where the photons are converted to an electrical signal.

- By segmentation one can arrive at spatial resolution.
- Because of the excellent timing properties (<1ns) the arrival time, or time of flight, can be measured very accurately → Trigger, Time of Flight.</p>

Scintillator

ATLAS Tile Calorimeter

D. Bortoletto Lecture 3

Photo-detectors

- Convert light into an electronic signal by using the photo-electric effect to convert photons into photo-electrons (p.e.)
- Requirement :
 - High Photon Detection Efficiency (PDE) or
 - Quantum Efficiency; Q.E. = N_{p.e}./N_{photons}
- Photomultipliers

SiPM Hammatsu MPPC

One of the first SiPM Pulsar, Moscow

Fiber Tracking

Planar geometries (end cap)

Circular geometries (barrel)

n₁ n₂

Light transport by total internal reflection

typ. 25 ^μm cladding (PMMA) n=1.49 typically <1 mm

D. Bortoletto L

(R.C. Ruchti, Annu. Rev. Nucl. Sci. 1996, 46,281)

D0 fiber tracker

12

High geometrical flexibility

- Fine granularity
- Low mass
- Fast response (ns)

Gas Detectors: primary

Primary and secondary Ionization

- Primary Ionization
 - X+p→X++p+e⁻
- Secondary ionization if $E(\delta) > E_i$
 - $X^+ e^- \rightarrow X^+ e^- + e^-$

Where:

- p = charge particle traversing the gas
- X = gas atom
- $e^{-} = delta electron (\delta)$

Critical parameters for Gas detectors:

- Ionization energy: E_i
- Average energy/ion pair: W_i
- Average number of primary ion pairs/cm²: n_p
- Average number of ion pairs/cm: n_T

- $E_i \sim 30 eV$
- $-n_T \sim 100$ pairs / 3 keV incident particle

$$\left\langle n_T \right\rangle = \frac{L \cdot \left\langle \frac{dE}{dx} \right\rangle_i}{W_i}$$

n_⊤ is ≈2-6 x n_p

L= layer thickness

Most common gases

Gas	ho (g/cm³) (STP)	<i>I₀</i> (eV)	W _i (eV)	<i>dE/dx</i> (MeVg ⁻¹ cm²)	<i>n_p</i> (cm ⁻¹)	<i>n_t</i> (cm ⁻¹)
H ₂	8.38 · 10 ⁻⁵	15.4	37	4.03	5.2	9.2
He	1.66 · 10 ⁻⁴	24.6	41	1.94	5.9	7.8
N ₂	1.17 · 10 ⁻³	15.5	35	1.68	(10)	56
Ne	8.39 · 10 ⁻⁴	21.6	36	1.68	12	39
Ar	1.66 · 10 ⁻³	15.8	26	1.47	29.4	94
Kr	3.49 · 10 ⁻³	14.0	24	1.32	(22)	192
Xe	5.49 · 10 ⁻³	12.1	22	1.23	44	307
CO ₂	1.86 · 10 ⁻³	13.7	33	1.62	(34)	91
CH ₄	6.70 · 10 ⁻⁴	13.1	28	2.21	16	53
C ₄ H ₁₀	2.42 · 10 ⁻³	10.8	23	1.86	(46)	195

Quelle: K. Kleinknecht, Detektoren für Teilchenstrahlung, B.G. Teubner, 1992

Ionization statistics

The ionization statistic has a critical impact on gas detector performance
 Production of primary ion/electron pairs is a Poissonian distributed

$$\begin{pmatrix} n_{p} \\ \rangle = \frac{L}{\lambda} \\ \lambda = \frac{1}{n_{e}\sigma_{I}} \\ \lambda = \frac{1}{n_{e}\sigma_{I}} \\ \end{pmatrix} P \left(n_{p}, \langle n_{p} \rangle \right) = \frac{\langle n_{p} \rangle^{n_{p}} e^{-\langle n_{p} \rangle}}{n_{p}!}$$

$$P \left(n_{p}, \langle n_{p} \rangle \right) = \frac{\langle n_{p} \rangle^{n_{p}} e^{-\langle n_{p} \rangle}}{n_{p}!}$$

$$Typical values of the mean free path \lambda
• He 0.25 cm
• Air 0.052 cm
• Xe 0.023 cm$$

Other important parameters are:

- Recombination and electron attachment due eo Electro-negative gases which bind electrons; e.g.: O₂, Freon, Cl₂, SF₆ ... → influences detection efficiency
- Diffusion → Influences the spatial resolution
- Avalanche process via impact ionization: > Important for the gain factor of the gas detector ...

D. Bortoletto Lecture 3

Transport of electrons/ions in a gas

Diffusion is evaluated using the classical kinetic theory of gases

$$\frac{dN}{dx} = \frac{N_0}{\sqrt{4\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$$

Diffusion without E,B field

• e⁻/ions are distributed with a Gaussian spread $\sigma(r)$ after a diffusion time t

The diffusion coefficient D, depends on the pressure P and the temperature T

$$D = \frac{1}{3}v\lambda = \frac{2}{3\sqrt{\pi}}\frac{1}{P\sigma_0}\sqrt{\frac{(kT)^3}{m}}$$

- The Mean-free path of electrons/ions in the path
- The mean velocity according to Maxwell distributionm is the mass of the particle

$$\lambda = \frac{1}{\sqrt{2}} \frac{kT}{\sigma_0 P}$$

$$v = \sqrt{\frac{8kT}{\pi m}}$$

Drift and diffusion in E and B fields

Transverse diffusion as function of drift length for different B fields Longitudinal diffusion as function of E field

Transport equation is usually solved numerically using programs like Magboltz and Garfield

D. Bortoletto Lecture 3

Drift and mobility

In an external E-field electrons/ions obtain velocity v_D in addition to thermal motion; on average electrons/ions move along field lines of electric field E

$$\vec{v}_D = \mu_{\pm} \left| \vec{E} \right|$$

- E ~ 1 kV / cm
- v_d ≈cm/ms for ions
- v_d ≈cm/µs for e-

 Fast CF₄-based mixtures reach v_D ≈10 cm · µs⁻¹ → reduced diffusion

Avalanche Multiplication

- The primary ionization signal is very small in a gas layer: in 1 cm of Ar/CO₂ (70:30) at NTP only ~100 electron—ion pairs are created → use an "internal gas amplification" mechanism to generate a detectable signal
- Large E fields → large electron kinetic energy → avalanche formation
 dn = n α dx α=Townsend Coefficient

 $-n(\mathbf{x}) = n_0 e^{\alpha \mathbf{x}}$

Gain or Amplification is:

$$G = \frac{n}{n_0} = e^{\alpha x}$$

■ Raether's limit G≈10⁸, since after that sparking can occur

Avalanche multiplication

Gas amplification factor

- Ionization mode: full charge collection; no amplification; G=1
- Proportional mode: multiplication; signal proportional to original ionization ⇒ measurement of dE/ dx. Secondary avalanches needs quenching; G ≈10⁴-10⁵
- Limited Proportional (Saturated, Streamer mode): strong photoemission; Require strong quenchers. High gain 10¹⁰⇒ large signal, simple electronics
- Geiger mode: Massive photo emission. Full length of anode affected. Discharge stopped by HV cut

Proportional counter

- Cylindrical proportional counter:
 - Single anode wire in a cylindrical cathode
 - E~1/r: weak field far from the wire
 - electrons/ions drift in the volume
 - multiplication occurs only near the anode

 Close to wire E-field very large

 ΔT_{kin}

- Use thin wire
- The kinetic energy of the electrons becomes very large near the wire and can produce secondary ionization

 $= e\Delta U$

0

Avalanche development

Time development of avalanche near the wire of a proportional counter

- a) single primary electron proceeds towards the wire anode,
- b) In the region of increasingly high field avalanche multiplication starts
- c) electrons and ions are subject to lateral diffusion,
- d) a drop-like avalanche develops which surrounds the anode wire,
- e) the electrons are quickly collected (~1ns) while the ions begin drifting
- f) towards the cathode generating the signal at the electrodes

Multiwire proportional chambers

- A proportional counter does not provide the position of the incident particle
- Charpak developed of multi-wire proportional chamber

G. Charpak Nobel price ('92)

Sense wire =2µ diameter d=2 mm

Construction details of the original design of Charpak's multi-wire chambers (from Nobel lecture)

Multi-Wire Proportional Chamber

Field distribution

- MWPC: Operation is difficult at smaller wire spacings. For example: the electrostatic repulsion for thin (10 µm) anode wires causes mechanical instability above a critical wire length of less than 25 cm for 1-mm
- Drift chambers: a thicker wire at proper voltage between anodes (field wire) reduces the field at the middle point between anodes and improves charge collection
- Linearity of the space-to-drifttime relation -> resulting in better spatial resolution

MWPC performance

- Signal generation:
 - Electrons drift to closest wire. Gas amplification near wire avalanche Signal generation due to electrons and slow ions (mainly slow ions, see backup)
- Timing resolution:
 - Depends on location of particle
 - For fast response: OR of all channels ...[Typical: $\sigma_t = 10 \text{ ns}$]

MWPC: space point resolution

Space point resolution: Only information about closest wire $\rightarrow \sigma_x = d/\sqrt{12} [d=2-4 \text{ mm}, \sigma_x \sim 0.6-1 \text{ mm}]$

Possible improvements: segmented cathode

2-dim.: use 2 MWPCs with different orientation

-3-dim.: several layers of such X-Y-MWPC combinations

2D MWPC

- Substantial improvement can be obtained using cathode strip/pads:
 - 2D information
 - High spatial resolutions due to center of gravity
 - Resolve ambiguities using strip pattern

Drift chambers

- Obtain spatial information by measuring the electrons drift time
 - time measurement started by an external (fast) detector, i.e. scintillator counter
 - electrons drift to the anode (sense wire), in the field created by the cathodes
 - the electron arrival at the anode stops the time measurement

Time Projection chamber (TPC)

Electronic bubble chamber

- Allow full 3-D reconstruction
 - XY: from wires and pads of MWPC
 - Z: from drift time measurement
- TPC setup:
 - Central HC cathode
 - MWPC at the end-cap of cylinder
 - B parallel to E field
- Charge transport
 - Electrons drift to end-caps
 - Drift distance several meter

Time projection chamber

Advantages:

- Complete track information → good momentum resolution
- Good particle ID by dE/dx
- Drift parallel to B fields suppress transverse diffusion by factors between 10 to 100
- Challenges
 - Long drift time limited rate
 - Large volume (precision)
 - Large voltages (discharges)
 - Large data volume
 - Difficult operation at high rate; gate open only for trigger events
- Typical resolution
 - z and y ≈mm, x=150-300 µm
 - dE/dx ≈5-10%

Aging in wire chambers

- Consequences of avalanche
 - Formation of radicals i.e. molecule fragments
 - Polymerization yield long chains of molecules
 - Polymers may be attached to the electrodes
 - Reduction of gas amplification
- Important to avoid contamination

Micro-strip gas chambers (MSGC)

- Avoid wires by realizing anode via microstructures on dielectrics
- Photolithography techniques allow 100 µm pitch
 - Higher granularity over wire chambers
 - High-rate capability >10⁶ Hz/mm²
 - Excellent spatial resolution (~30µm)
 - Time resolution in the ns range.
- MSGC were first developed in 1990s
 - Initial problems sparks and anode destruction

MGSC – technical solutions

MSGC prone to aging. Solutions:

- Micromegas
 - Gas volume divided in two by metallic micro-mesh
 - Gain = 10^4 and a fast signal of 100ns.
- **GEM** (Gas Electron Multipliers) _
 - Thin insulating Kapton foil coated with metal film
 - Chemically produced holes pitch ≈100 µm
 - Electrons are guided by high drift field of GEM which generates avalanche

1997

GAS detectors at the LHC

- The LHC experiments use very 'conservative' gas detectors
- Mainly for large scale muons detectors
- While the principle detecting elements are unchanged since many years, several aspects have improved dramatically:
- Readout electronics (integration, radiation resistance)
- Excellent understanding and optimization of detector physics effects (HEED, MAGBOLTZ, GARFIELD)
- Improvement in ageing characteristics due to special gases
- The principles are traditional but all other aspects are 100% state of the art. The ATLAS MDTsare NOT Geiger counters.

Atlas Muon Spectrometer, 44 m long, from r=5 to11m.

1200 Chambers

D. Bortoletto Lecture 3

The upgrades

ATLAS:

TRT replaced by Silicon Tracker

CMS & ATLAS

- Muons System detectors will mainly remain unchanged
 - Addition of chambers to add redundancy
 - Possible addition of GEM at low eta where the rates are higher

BACKUP

Signal pulse formation and shape

$$dV = \frac{q}{lCV_0} \frac{d\phi(r)}{dr} dr$$
 with $\phi(r) = -\frac{CV_0}{2\pi\varepsilon_0} \ln \frac{r}{a}$

- Integrate from r' : point where the multiplication starts
- The induced voltage from electrons is:

$$V^{-} = -\frac{q}{lCV_{0}} \int_{a+r'}^{a} \frac{d\phi(r)}{dr} dr = -\frac{q}{lCV_{0}} \left[\frac{CV_{0}}{2\pi\varepsilon_{0}} \ln\left(\frac{a+r'}{a}\right) \right]$$
$$= -\frac{q}{2\pi\varepsilon_{0}l} \left[\ln\left(\frac{a+r'}{a}\right) \right]$$

The total induced voltage for ions is

$$V^{+} = \frac{q}{lCV_{0}} \int_{a+r'}^{b} \frac{d\phi(r)}{dr} dr = -\frac{q}{2\pi\varepsilon_{0}l} \left[\ln\left(\frac{b}{a+r'}\right) \right]$$

 $-V_0$ (harge) (+)(+

> Cross check: V=V⁺+V⁻=-q/IC C= $2\pi\epsilon_0$ /ln(b/a)

The ratio V⁻/V⁺ is:

$$\frac{V^{-}}{V^{+}} = \frac{\ln\left(\frac{a+r'}{a}\right)}{\ln\left(\frac{b}{a+r'}\right)}$$

For a=10 μ m, b=10 mm, r'=1 μ m \rightarrow V⁻/V⁺=0.013 \rightarrow Signal is mainly due to ions

Signal pulse formation and shape

Ignoring electron signal and setting r(0)=a

45

Signal shape

Total drift time T

$$r(T) = b$$
$$b = \left(a^2 + \frac{\mu C V_0}{\pi \varepsilon_0}\right)^{1/2}$$

$$T = \frac{\pi\varepsilon_0}{\mu CV_0} \left(b^2 - a^2\right) = t_0 \left(\frac{b^2}{a^2} - 1\right)$$

$$t_0 = \frac{\pi \varepsilon_0}{\mu C V_0}$$

We can determine V(a/b T)

$$V\left(\frac{a}{b} \cdot T\right) = -\frac{q}{4\pi\varepsilon_0} \ln\left(1 + \frac{\frac{a}{b} \cdot T}{t_0}\right) = -\frac{q}{4\pi\varepsilon_0} \ln\left(1 + \frac{a}{b}\left(\frac{b^2}{a^2} - 1\right)\right)$$
$$= -\frac{q}{4\pi\varepsilon_0} \ln\left(\frac{b}{a}\right) = -\frac{1}{2}\frac{q}{lC} \qquad \text{with } C = \frac{2\pi\varepsilon_0}{\ln(b/a)}$$

Typically $a/b \approx 10^{-3}$, i.e. after 10^{-3} T already half of the signal voltage is reached ... Choice of suitable RCcircuit allows short (differentiated) signals ...

Geometries

Light guides: transfer by total internal reflection + outer reflector

- UV light enters the WLS material
- Light is transformed into longer wavelength
- → Total internal reflection inside the WLS material
- → 'Transport' of the light to the photo detector

Photomultipliers

- Scintillators are well established and cheap techniques to detect photons → Photomultipliers and the fast response time → 1 to 100ns
- Schematic of a Photomultiplier:
 - Typical Gains (as a function of the applied voltage): 10⁸ to 10¹⁰
 - Typical efficiency for photon detection:
 < 20%
 - For very good PMs: registration of single photons possible.
 - Example: 10 primary Electrons, Gain 10⁷ → 10⁸ electrons in T ≈ 10ns.
 I=Q/T = 10⁸*1.603*10⁻¹⁹/10*10⁻⁹= 1.6mA.
 - Across a 50 Ω Resistor → U=R*I= 80mV.

Semitransparent photocathode

D. Bortoletto Lecture 3

Readout of photons in a cost effective way is rather challenging. D. Bortoletto Lecture 3

Field in drift chamber

- Field wires avoid low field regions -> long drift-times
- Uniform drift field requires:

Screening

electrodes

– Gap length/wire spacing ≈ 1

Field wire

- HV 1

■ i.e. for typical wire spacing
 → thick chambers O(cm)

- Field wire - HV I
- Adjustable field multi-wire drift chamber with voltage divider via cathode wire planes

Anodic wire

+ HV 2

- Space point resolution limited by mechanical accuracy ≈200 µm
- Hit density needs to be low.

D. Bortoletto Lecture 3

TPC Technical solutions

- Problem with space charge effects due to slow moving ions lead to changes in the drift region E- field
- Solved by gating grid which must be triggered

Tracking detectors

- Tracking at fixed target experiments:
 - Multi-layer MWPC or drift chamber

- Tracking at collider experiments:
 - cylindrical drift chamber

