

Standard Model @ Hadron Colliders I. QCD

P.Mättig

Bergische Universität Wuppertal

Standar model pillar I: Matter

Unique topic for hadron colliders

Neutrinos not really testable @ hadron colliders

Most quarks/all charged leptons very deeply scrutinized

Standard Model pillar II: Forces

All interactions very precisely determined:

$$\alpha_s(M = M_Z) = 0.1184(7)$$

$$\alpha_{em} = 1/137.03499976(50)$$

$$G_F(M = m_\mu) = 1.16639(1) \cdot 10^{-5} \text{ GeV}^{-2}$$

$$M_Z = 91.1882(22) \text{ GeV}$$

Dynamics well tested at energies ~ 100 GeV

e.g.: $g \rightarrow gg, (Z, \gamma) \rightarrow W^+W^-, \dots$

Standard Model Pillar III: Higgs

Boson masses and fermion masses break gauge symmetries

→Non – renormalisable theory

Standard Model way out: Four Higgs fields

- Three give mass to W/Z bosons
- one is physical with well defined properties (except mass)

Until 20 days ago ??? THE ONLY MISSING PIECE OF THE STANDARD MODEL!

Why Standard Model @ Hadron Colliders?

- > Explore phase space not determined from first principles
- Probe at highest energies
- > More statistics → Top Quark
- Scrutinize the remaining piece Higgs Boson

Standard model: the way towards establishing ,New Physics'?

Standard Model processes background to ,New Physics'
 will provide tools for searches for new phenomena
 Testing Standard Model to the extreme
 may reveal a glimpse of ,New Physics'

Forerunners of LHC

Two experiments CDF & D0

Tevatron (Fermilab): last 20 years: Leading Proton – Antiproton collider 1.96 TeV c.m. energy

Today's flagship LHC

Proton – Proton Kollisionen @ 14 TeV c.m. energy (currently 8 TeV)

4 Experiments

Will focus on results from ATLAS and CMS

(LHCb 🗲 talk of G.Raven)

Reminder: how , protons' interact

BERGISCHE UNIVERSITÄT WUPPERTAL

Proton scattering = scattering of quarks and gluons

$$\sigma(pp \to YX) = \int_0^1 dx_1 \int_0^1 dx_2 \sum_f f_f(x_1) f_{\bar{f}}(x_2) \cdot \sigma(q_f(x_1P) + \bar{q}_f(x_2P) \to Y)$$

Reminder: x, M

LHC has 4 (7)x higher energy,

Note for M ~ 400 – 1000 TeV: Tevatron qq – LHC gg

Some basics: rapidity

Rapidity a ,natural' observable for consequtive branchings

$$\frac{d\sigma}{dy} = \text{const}$$
$$y = \frac{1}{2} \ln \left(\frac{E + p_{\parallel}}{E - p_{\parallel}} \right) = \frac{1}{2} \ln \left(\frac{E + p_{\parallel}}{\sqrt{m^2 + p_T^2}} \right)$$
$$y \implies y' = y + \frac{1}{2} \ln \left(\frac{1 + \beta}{1 - \beta} \right)$$

Frequently used y $\rightarrow \eta$ assuming massless particles ,pseudo – rapidity'

$$\eta = \frac{1}{2} \ln \left(\tan \theta / 2 \right)$$

LHC a strong interaction collider

Remember: strong coupling rises with decreasing Q²

Difficulty: at around Q ~ 1 GeV too strong to be calculable in perturbation theory

,too many gluons emitted'

Basic limitation of theoretical description

hard scatter: two in \rightarrow two out

$$= \int_0^1 d\mathbf{x_1} \int_0^1 d\mathbf{x_2} \sum_{\mathbf{f}} \mathbf{F_f}(\mathbf{x_1}) \mathbf{F_{\overline{f}}}(\mathbf{x_2}) \sigma(\mathbf{q_1}(\mathbf{x_1P}) + \mathbf{q_2}(\mathbf{x_2P}) \rightarrow \mathbf{Y} + \mathbf{X} + \operatorname{Rest})$$

Parton distribution function

Parton momenta P_1 , P_2 : fraction of proton momenta $\Rightarrow x_1P$, x_2P only probability distributions known

 $\sigma(\mathbf{p_1}(\mathbf{P_1}) + \mathbf{p_2}(\mathbf{P_2}) \to \mathbf{Y} + \mathbf{X} + \operatorname{Rest})$

$$= \int_0^1 d\mathbf{x_1} \int_0^1 d\mathbf{x_2} \sum_{\mathbf{f}} \mathbf{F_f}(\mathbf{x_1}) \mathbf{F_{\overline{f}}}(\mathbf{x_2}) \sigma(\mathbf{q_1}(\mathbf{x_1}\mathbf{P}) + \mathbf{q_2}(\mathbf{x_2}\mathbf{P}) \rightarrow \mathbf{Y} + \mathbf{X} + \text{Rest})$$

Strong interaction: gluon radiation

A parton shower

Original hard partons start to ,shower', i.e. split in gluons and quarks

Stefan Gieseke · DESY MC school 09

11/42

Quarks and Gluons hadronize

Quarks and Gluons turn into pions, kaons, protons:

hadronisation

chool 09

11/42

A more comprehensive picture

Stefan Gieseke · DESY MC school 09

11/42

 $\sigma(\mathbf{p_1}(\mathbf{P_1}) + \mathbf{p_2}(\mathbf{P_2}) \to \mathbf{Y} + \mathbf{X} + \text{Rest})$

$$= \int_0^1 d\mathbf{x_1} \int_0^1 d\mathbf{x_2} \sum_{\mathbf{f}} \mathbf{F_f}(\mathbf{x_1}) \mathbf{F_{\overline{f}}}(\mathbf{x_2}) \sigma(\mathbf{q_1}(\mathbf{x_1P}) + \mathbf{q_2}(\mathbf{x_2P}) \rightarrow \mathbf{Y} + \mathbf{X} + \mathbf{Rest})$$

QCD in the detector

A lot of ,isotropic' hadron production

One bunch Xing: Some 20 pp – interactions ,pile – up'

Started with $qq \rightarrow qq$ Result: 1000 hadrons

Standard Model tests: Type I Underlying event

Standard Model tests: Type II Parton distribution function

Measure parton Distribution function

Standard Model tests: Type III The hard scatter process

In a nutshell:

Hard process

- = (data
 - pile up events from simultaneous pp collisions
 - underlying event from proton remnants)
 - x (transfer from jets -> partons)
 - x (unfolding of parton energies = parton distribution fct.)

Involved,

..... but with experimental knowledge feasible

Key ingredients to use data

- pile up events = multiple proton proton interactions in one bunch crossing
- ,underlying event'
- transfer function (partons -> hadrons)
- -Parton distribution functions

Pile up events

Pile – up events can be measured: pp – interactions without trigger bias ,minimum bias events' At 7 TeV: 6 charged particles per $|\Delta \eta| = 1$, mostly low p_T

No good description by models Note: per LHC bunch crossing ~ currently 20 of these events

Transverse regions little affected by hard process properties like underlying event

Can be reasonably described by models

Modelling ,soft interactions'

Minimum bias + underlying events: Measured in special environment Extrapolate to all conditions: try to model applying several ad – hoc concepts

Overlap of protons

Colour screening

Colour reconnection

Challenging! Only an approximate description possible!

Parton distribution functions

Energy fractions of different kinds of partons f in proton

 $\sigma(\mathbf{p_1}(\mathbf{P_1}) + \mathbf{p_2}(\mathbf{P_2}) \to \mathbf{Y} + \mathbf{X} + \text{Rest})$ $= \int_0^{\mathbf{1}} d\mathbf{x_1} \int_0^{\mathbf{1}} d\mathbf{x_2} \sum_{\mathbf{f}} \mathbf{F_f}(\mathbf{x_1}) \mathbf{F_{\overline{f}}}(\mathbf{x_2}) \sigma(\mathbf{q_1}(\mathbf{x_1}\mathbf{P}) + \mathbf{q_2}(\mathbf{x_2}\mathbf{P}) \rightarrow \mathbf{Y} + \mathbf{X} + \text{Rest})$ xf(x,Q2) ... HEPDATA Databases GeV**2 Various measurements CTFQ6.1M CTEQ6.1M 1.6 CTEQ6.1M at M²₁ Gluons CTEQ6.1M × 0. 1.4 theoretical evolution to 1.2 $(M^2)_2$ **Up quarks** 0.8 0.6 Just one of several 0.4 **Down quarks** pdf parametrisations 0.2 0 10-3 10-2 10^{-1}

Significant uncertainties

LHC will allow some self - calibration

Hard interaction: Jets

BERGISCHE UNIVERSITÄT WUPPERTAL

Jets: representative of quarks and gluons

stringent test of theory

- experimenal challenge: extract partons from 1000 hadrons
- experimentally attainable

direction and energy + (sometimes) parton flavour

How to find a jet ?

Jet

jet 1

Defⁿ

jet 2

hadron level

Jet

jet 1

Defⁿ

jet 2

Unambiguous connection to underlying partons → Comparison to theory

Not so straight – forward: example cone – jet finder

Sequential jet finder

,Reverse evolution of event'

- **1** Select one particle (e.g. most energetic)
- 2 Find ,most similar' particle, (e.g. smallest angle, p_t)
- 3 Is combination smaller than predefined ,cut off' value (e.g. maximum angle, maximum mass)
 IF YES:
- 4 Combine to a new ,pseudo particle' (e.g. sum 4 momenta)
- 5 Go to 2

IF NO:

4 Jet found: sum of all associated particles

Standard jet finding at LHC: ,Anti – kt'

Standard jet finding at LHC: ,Anti – kt'

Standard jet finding at LHC: ,Anti – kt'

The final jets

BERGISCHE UNIVERSITÄT WUPPERTAL

All particles assigned to jets

Close to circular in space good for experimental corrections

Note: special treatment of particles close to beam

Physics from Jet measurements @ hadron - colliders

BERGISCHE UNIVERSITÄT WUPPERTAL

- crucial for understanding background
- tests of QCD predictions at highest reachable energies (inclusive jets, jj – masses, multi – jets)
- will help sorting out parton distribution functions
- tests of physics beyond SM

The experimental challenge I

BERGISCHE UNIVERSITÄT WUPPERTAL

 p_{τ}^{γ} [GeV]

Steeply falling cross section → sensitivity to energy scale Jet energy determined from calorimeter (+ tracking information) Sophisticated calibration procedure

BERGISCHE

Peter Mättig, CERN Summer Students 2012

Uncertainties: summary

BERGISCHE UNIVERSITÄT WUPPERTAL

Experimental uncertainties dominate at low p_T

pdf/theoretical uncertainties dominate at high p_T

Note: loss of control of uncertainties for $p_T < 20$ GeV

Jet cross sections in rapidity and pT

Excellent agreement theory <-> data

over huge range in phase space

Peter Mättig, CERN Summer Students 2012

BERGISCHE UNIVERSITÄT WUPPERTAL

Excellent agreement theory <-> data

Probing masses up to 5 TeV!

QCD effects: number of jets

BERGISCHE UNIVERSITÄT WUPPERTAL

Even though not exact matrix element: Good agreement on jet multiplicity

The effects of gluon radiation

BERGISCHE UNIVERSITÄT WUPPERTAL

High p_T Jets

BERGISCHE UNIVERSITÄT WUPPERTAL

High p_T jets: important to explore TeV scale physics May be due to boosted objects → substructure Important: does QCD describe the structure of boosted jets?

Testing high pT – jets = search for BSM: Are partons composite?

Jets and BSM: Search for di – jet resonances

BERGISCHE UNIVERSITÄT WUPPERTAL

Are quarks composite ?

BERGISCHE UNIVERSITÄT WUPPERTAL

Compositeness → modify angular distribution

continous change with higher jet – jet mass

No deviation from SM observed: Λ > 7.8 TeV

Note: results applicable to other exotic models: black – holes, colour octet quarks,

Strong interactions at core of pp –interactions

- Multihadron events (soft interactions) measured
- Jet cross sections agree with predictions over a wide range
- Probing Multi TeV range: no sign for physics Beyond Standard Model