Lectures on Antimatter

Michael Doser / CERN

This is what it's all about:

This is what it's all about:

Overview:
I. Introduction and overview
2.Antimatter at high energies (SppS, LEP, Fermilab)
3. Meson spectroscopy (antimatter as QCD probe)
4.Astroparticle physics and cosmology
5. CP and CPT violation tests
6. Precision tests with Antimatter
7. Precision tests with Antihydrogen
8. Applications of antimatter

Acknowledgement:
These lectures contain a wide range of material, from many sources. I have endeavored to provide links to publications in many places. Some of the sources, from which slides, graphs, drawings or thoughts were liberally appropriated are in addition presentations, lectures or publications by:

Gerald Gabrielse, Eberhard Widmann, Rolf Landua, Michael Holzscheiter, and many resources from the internet, specifically those dealing with the astroparticle-physics and cosmological aspects of antimatter.

Overview:

I. Introduction and overview

2. Antimatter at high energies (SppS, LEP, Fermilab)
3. Meson spectroscopy (antimatter as QCD probe)
4.Astroparticle physics and cosmology
4. CP and CPT violation tests
5. Precision tests with Antimatter
6. Precision tests with Antihydrogen
7. Applications of antimatter

Introduction and overview

I.A bit of theory

2. A bit of history

3.The making of...

| 1905 |
| :---: | :---: |
| Special Relativity | | 1925 |
| :---: |
| Quantum Mechanics |
| |

1955
Antiproton

Primordial antimatter, Anti-stars

Primordial antimatter, Anti-stars

Schrödinger:

$$
\begin{array}{r}
E=\frac{p^{2}}{2 m} \rightarrow i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi \\
\text { non-relativistic } \\
\binom{E \rightarrow i \hbar \frac{\partial}{\partial t}}{p \rightarrow-i \hbar \nabla} \text { differential operators }
\end{array}
$$

Schrödinger:

$$
E=\frac{p^{2}}{2 m} \rightarrow i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi
$$

$$
E \rightarrow i \hbar \frac{\partial}{\partial t}
$$

relativistic energy$p \rightarrow-i \hbar \nabla$ differential operators momentum relation

$$
E^{2}=p^{2}+m^{2} \rightarrow-\hbar^{2} \frac{\partial^{2}}{\partial t^{2}} \psi=-\hbar^{2} \nabla^{2} \psi+m^{2} \psi
$$

acts on wavefuntion
$\psi(\mathbf{x}, t)$

Schrödinger: momentum relation

$$
E=\frac{p^{2}}{2 m} \rightarrow i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi
$$

$$
E \rightarrow i \hbar \frac{\partial}{\partial t}
$$

$p \rightarrow-i \hbar \nabla$ differential operators
relativistic energymomentum relation

$$
E^{2}=p^{2}+m^{2} \rightarrow-\hbar^{2} \frac{\partial^{2}}{\partial t^{2}} \psi=-\hbar^{2} \nabla^{2} \psi+m^{2} \psi
$$

relativistic, spin 0
energy Eigenvalues (free particle)

$$
E=+/-\left(\mathbf{p}^{2}+m^{2}\right)^{1 / 2}
$$

(number of particles not conserved) negative energy solutions with negative probability density
acts on wavefuntion

Schrödinger: momentum relation
relativistic energy$E=\frac{p^{2}}{2 m} \rightarrow i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi$ $E \rightarrow i \hbar \frac{\partial}{\partial t}$ momentum relation

Klein-Gordon:

$$
\begin{array}{ll}
E^{2}=p^{2}+m^{2} \rightarrow-\hbar^{2} \frac{\partial^{2}}{\partial t^{2}} \psi=-\hbar^{2} \nabla^{2} \psi+m^{2} \psi \\
\text { n: } \begin{array}{l}
\text { relativistic, spin 0 } \\
\text { (number of particles not conserved) } \\
\mathrm{E}=+/-\left(\mathbf{p}^{2}+\mathrm{m}^{2}\right)^{1 / 2}
\end{array} & \begin{array}{l}
\text { negative energy solutions with } \\
\text { negative probability density }
\end{array}
\end{array}
$$

Dirac: linear in $\frac{\partial}{\partial t}$ and ∇
acts on wavefuntion
$\psi(\mathbf{x}, t)$

Schrödinger: momentum relation
relativistic energymomentum relation

Klein-Gordon:

$$
E^{2}=p^{2}+m^{2} \rightarrow-\hbar^{2} \frac{\partial^{2}}{\partial t^{2}} \psi=-\hbar^{2} \nabla^{2} \psi+m^{2} \psi
$$

relativistic, spin 0
energy Eigenvalues (free particle)

$$
E=+/-\left(\mathbf{p}^{2}+m^{2}\right)^{1 / 2}
$$

(number of particles not conserved) negative energy solutions with negative probability density

Dirac: linear in $\frac{\partial}{\partial t}$ and $\nabla \quad$ general form: $\quad H \psi=(\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m) \psi$
acts on wavefuntion
$\psi(\mathbf{x}, t)$

Schrödinger: momentum relation
relativistic energymomentum relation

Klein-Gordon:

$$
E^{2}=p^{2}+m^{2} \rightarrow-\hbar^{2} \frac{\partial^{2}}{\partial t^{2}} \psi=-\hbar^{2} \nabla^{2} \psi+m^{2} \psi
$$

relativistic, spin 0
energy Eigenvalues (free particle)

$$
E=+/-\left(\mathbf{p}^{2}+\mathrm{m}^{2}\right)^{1 / 2}
$$

(number of particles not conserved) negative energy solutions with negative probability density

Dirac: linear in $\frac{\partial}{\partial t}$ and $\nabla \quad$ general form: $\quad H \psi=(\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m) \psi$

$$
\text { energy-momentum relationship: } \quad H^{2} \psi=\left(\mathbf{P}^{2}+m^{2}\right) \psi
$$

$$
\begin{aligned}
H \psi & =(\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m) \psi \\
H^{2} \psi & =\left(\alpha_{i} P_{i}+\beta m\right)\left(\alpha_{j} P_{j}+\beta m\right) \psi
\end{aligned}
$$

$$
\begin{aligned}
H \psi & =(\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m) \psi \\
H^{2} \psi & =\left(\alpha_{i} P_{i}+\beta m\right)\left(\alpha_{j} P_{j}+\beta m\right) \psi \\
& =\left(\alpha_{i}^{2} P_{i}^{2}+\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) P_{i} P_{j}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) P_{i} m+\beta^{2} m^{2}\right) \psi
\end{aligned}
$$

$$
\begin{aligned}
H \psi & =(\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m) \psi \\
H^{2} \psi & =\left(\alpha_{i} P_{i}+\beta m\right)\left(\alpha_{j} P_{j}+\beta m\right) \psi \\
& =\left(\alpha_{i}^{2} P_{i}^{2}+\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) P_{i} P_{j}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) P_{i} m+\beta^{2} m^{2}\right) \psi
\end{aligned}
$$

$$
\begin{aligned}
H \psi & =(\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m) \psi \\
H^{2} \psi & =\left(\alpha_{i} P_{i}+\beta m\right)\left(\alpha_{j} P_{j}+\beta m\right) \psi \\
& =\left(\underline{\alpha_{i}^{2}} P_{i}^{2}+\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) P_{i} P_{j}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) P_{i} m+\beta^{2} m^{2}\right) \psi
\end{aligned}
$$

$$
\begin{aligned}
H \psi & =(\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m) \psi \\
H^{2} \psi & =\left(\alpha_{i} P_{i}+\beta m\right)\left(\alpha_{j} P_{j}+\beta m\right) \psi \\
& \left.=\frac{\left(\alpha_{i}^{2} P_{i}^{2}+\frac{\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right)}{1}\right.}{0} P_{i} P_{j}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) P_{i} m+\beta^{2} m^{2}\right) \psi
\end{aligned}
$$

$$
\begin{array}{rl}
H \psi & =(\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m) \psi \\
H^{2} \psi & =\left(\alpha_{i} P_{i}+\beta m\right)\left(\alpha_{j} P_{j}+\beta m\right) \psi \\
& =\frac{\left(\alpha_{i}^{2} P_{i}^{2}\right.}{1}+\underline{\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right)} P_{i} P_{j}+\underline{H^{2} \psi=\left(\mathbf{P}^{2}+m^{2}\right) \psi} \\
0 & 0
\end{array}
$$

$$
\begin{aligned}
H \psi & =(\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m) \psi \\
H^{2} \psi & =\left(\alpha_{i} P_{i}+\beta m\right)\left(\alpha_{j} P_{j}+\beta m\right) \psi \\
& =\left(\frac{\alpha_{i}^{2} P_{i}^{2}}{1}+\frac{\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right)}{0} P_{i} P_{j}+\underline{H^{2} \psi=\left(\mathbf{P}^{2}+m^{2}\right) \psi}\right. \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& H \psi=(\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m) \psi \\
& H^{2} \psi=\left(\alpha_{i} P_{i}+\beta m\right)\left(\alpha_{j} P_{j}+\beta m\right) \psi \\
&=\left(\frac{\alpha_{i}^{2} P_{i}^{2}+\underline{\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right)} P_{i} P_{j}+\frac{\left(\alpha_{i} \beta+\beta \alpha_{i}\right)}{1}}{0} P_{i} m+\frac{\left.\beta^{2} m^{2}\right) \psi}{1}\right. \\
& 1 \\
& \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta \text { anticommute with each other } \\
& \alpha_{1}^{2}=\alpha_{2}^{2}=\alpha_{3}^{2}=\beta^{2}=1
\end{aligned}
$$

$$
\begin{aligned}
H \psi= & (\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m) \psi \\
H^{2} \psi= & \left(\alpha_{i} P_{i}+\beta m\right)\left(\alpha_{j} P_{j}+\beta m\right) \psi \\
= & \underline{\left(\alpha_{i}^{2} P_{i}^{2}\right.}+\frac{\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right)}{1} P_{i} P_{j}+\underline{\left(\alpha_{i} \beta+\beta \alpha_{i}\right)} P_{i} m+\underline{\left.\beta^{2} m^{2}\right) \psi} \\
& 0 \\
& \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta \quad \text { anticommute with each other } \\
& \alpha_{1}^{2}=\alpha_{2}^{2}=\alpha_{3}^{2}=\beta^{2}=1
\end{aligned}
$$

lowest dim. matrices: 4×4; Pauli-Dirac representation

$$
\begin{aligned}
H \psi= & (\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m) \psi \\
H^{2} \psi= & \left(\alpha_{i} P_{i}+\beta m\right)\left(\alpha_{j} P_{j}+\beta m\right) \psi \\
= & \frac{\left(\alpha_{i}^{2} P_{i}^{2}\right.}{1}+\frac{\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right)}{0} P_{i} P_{j}+\underline{\left(\alpha_{i} \beta+\beta \alpha_{i}\right)} P_{i} m+\underline{\left.\beta^{2} m^{2}\right) \psi} \\
& 0 \\
& \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta \quad \text { anticommute with each other } \\
& \alpha_{1}^{2}=\alpha_{2}^{2}=\alpha_{3}^{2}=\beta^{2}=1
\end{aligned}
$$

lowest dim. matrices: 4×4; Pauli-Dirac representation
$\psi:$ 4-component column vector (Dirac spinor) ($\mathrm{E}>0,+\mathrm{I} / 2$); $(\mathrm{E}>0,-\mathrm{I} / 2) ;(\mathrm{E}<0,+\mathrm{I} / 2) ;(\mathrm{E}<0,-\mathrm{I} / 2)$

$$
\begin{aligned}
& H \psi=(\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m) \psi \\
& H^{2} \psi=\left(\alpha_{i} P_{i}+\beta m\right)\left(\alpha_{j} P_{j}+\beta m\right) \psi
\end{aligned}
$$

$$
H^{2} \psi=\left(\mathbf{P}^{2}+m^{2}\right) \psi
$$

lowest dim. matrices: 4×4; Pauli-Dirac representation
$\psi: 4$-component column vector (Dirac spinor) ($\mathrm{E}>0,+\mathrm{I} / 2$); $(\mathrm{E}>0,-\mathrm{I} / 2) ;(\mathrm{E}<0,+\mathrm{I} / 2) ;(\mathrm{E}<0,-\mathrm{I} / 2)$

$$
i \beta \frac{\partial \psi}{\partial t}=-i \beta \alpha \nabla \psi+m \psi
$$

$$
\begin{aligned}
& H \psi=(\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m) \psi \\
& H^{2} \psi=\left(q_{i} P_{i}+\beta m\right)\left(\alpha_{j} P_{j}+\beta m\right) \psi
\end{aligned}
$$

$$
H^{2} \psi=\left(\mathbf{P}^{2}+m^{2}\right) \psi
$$

lowest dim. matrices: 4×4; Pauli-Dirac representation
$\psi:$ 4-component column vector (Dirac spinor) ($\mathrm{E}>0,+\mathrm{I} / 2$); $(\mathrm{E}>0,-\mathrm{I} / 2) ;(\mathrm{E}<0,+\mathrm{I} / 2) ;(\mathrm{E}<0,-\mathrm{I} / 2)$
$\times \beta$

$$
i \beta \frac{\partial \psi}{\partial t}=-i \beta \alpha \nabla \psi+m \psi
$$

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

$$
\begin{aligned}
H \psi= & (\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m) \psi \\
H^{2} \psi= & \left(c_{i} P_{i}+\beta m\right)\left(\alpha_{j} P_{j}+\beta m\right) \psi \\
= & \left(\alpha_{i}^{2} P_{i}^{2}+\frac{\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right)}{1} P_{i} P_{j}+\underline{\left(\alpha_{i} \beta+\beta \alpha_{i}\right)} P_{i} m+\underline{\beta}^{2} m^{2}\right) \psi=\left(\mathbf{P}^{2}+m^{2}\right) \psi \\
& 0 \\
& \alpha_{1}, \alpha_{2} \\
& \alpha_{1}^{2}=\alpha_{2}^{2}=\alpha_{3}^{2}=\beta^{2}=1
\end{aligned}
$$

lowest dim. matrices: 4×4; Pauli-Dirac representation
$\psi: 4$-component column vector (Dirac spinor) $(E>0,+I / 2) ;(E>0,-I / 2) ;(E<0,+I / 2) ;(E<0,-I / 2)$

$$
i \beta \frac{\partial \psi}{\partial t}=-i \beta \alpha \nabla \psi+m \psi
$$

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

relativistic, spin $1 / 2$
(number of particles conserved)

Benefit of hindsight: Quantum Field Theory

Benefit of hindsight: Quantum Field Theory

The electron (field) is no longer described by a wave function but an operator that creates and destroys particles. All energies are positive.

Benefit of hindsight: Quantum Field Theory

The electron (field) is no longer described by a wave function but an operator that creates and destroys particles. All energies are positive.

Observer \#1 : A happens before B

Benefit of hindsight: Quantum Field Theory

The electron (field) is no longer described by a wave function but an operator that creates and destroys particles. All energies are positive.

An electron can emit a photon at A, propagate a certain distance, and then absorb another photon at B.

Wave function only localized within Compton wave length $(\lambda \sim 1 / m)$.

Wave function only localized within Compton wave length $(\lambda \sim 1 / m)$.

Quantum relativity: electron wave function can be outside the light cone (Compton wave length $\mathrm{I}=\mathrm{h} / \mathrm{m}_{e} \mathrm{c}$)

For a moving observer, event B can therefore happen before event A. The process at B is then interpreted as 'pair creation'.

Wave function only localized within Compton wave length $(\lambda \sim 1 / m)$.

Quantum relativity: electron wave function can be outside the light cone (Compton wave length $\mathrm{I}=\mathrm{h} / \mathrm{m}_{e} \mathrm{c}$)

For a moving observer, event B can therefore happen before event A. The process at B is then interpreted as 'pair creation'.
"One observer's electron is the other observer's positron"

Wave function only localized within Compton wave length ($\lambda \sim 1 / \mathrm{m}$).

Quantum relativity: electron wave function can be outside the light cone (Compton wave length $\mathrm{I}=\mathrm{h} / \mathrm{m}_{e} \mathrm{c}$)

For a moving observer, event B can therefore happen before event A. The process at B is then interpreted as 'pair creation'.
"One observer's electron is the other observer's positron"

Causality requires antiparticles to exist

Antimatter:

Cloud chamber photograph by Andersen Phys. Rev. 43, 491 (1933)
Nobel prize 1936

1955 - intentional production of antiprotons in an accelerator

- Energy release $1350 \pm 50 \mathrm{MeV}>\mathrm{m}_{\mathrm{p}}$
- Total 35 annihilations!
- Chamberlain et al., Phys. Rev. I02, 902 (I956)
- final proof of antimatter character

Discovery of the Antiproton

- Bevatron 5.6 GeV
- Just at threshold!
- Discrimination against π^{-}: measure
- Momentum
- Magnets: I. 19 GeV
- Velocity
- TOF 51 vs. 40 ns
- Cherenkov counter veto
-60 events in 1955
- $\Delta \mathrm{m} / \mathrm{m}_{\mathrm{p}} \sim 5 \%$
- O. Chamberlain, E. Segre, C.Wiegand,T.Ypsilantis, Phys. Rev. I00, 947 (I955)
- Nobelprize Chamberlain \& Segre 1959

Discovery of the Antiproton

- Bevatron 5.6 GeV
- Just at threshold!
- Discrimination against π^{-}: measure
- Momentum
- Magnets: I. 19 GeV
- Velocity
- TOF 51 vs. 40 ns
- Cherenkov counter veto
- 60 events in 1955
- $\Delta \mathrm{m} / \mathrm{m}_{\mathrm{p}} \sim 5 \%$
- O. Chamberlain, E. Segre, C.Wiegand,T.Ypsilantis, Phys. Rev. I00, 947 (I955)
- Nobelprize Chamberlain \& Segre 1959

Study antimatter

Baryon asymmetry

Investigate symmetries

Antimatter

Study antimatter

Baryon asymmetry
Investigate symmetries

Antimatter

Use antimatter as tool
Matter-antimatter annihilation: source of new particles Investigate symmetries

Study antimatter

Baryon asymmetry
Investigate symmetries

Antimatter

Use antimatter as tool
Matter-antimatter annihilation: source of new particles Investigate symmetries
need to make it, though...

Production Energy $\quad \mathrm{pN} \rightarrow \mathrm{pX} \mathrm{p} \overline{\mathrm{p}}$

TABLE II. Comparison of CERN and Fermilab antiproton sources: for Fermilab the upgrading program quoted in Church and Marriner (1993) has been anticipated; for CERN the measured yield with magnetic horn has been used.

Lectures on Antimatter

CERN Accelerator Complex

Overview:

I. Introduction and overview
2.Antimatter at high energies (SppS, LEP, Fermilab)
3. Meson spectroscopy (antimatter as QCD probe)
4.Astroparticle physics and cosmology
5. CP and CPT violation tests
6. Precision tests with Antimatter
7. Precision tests with Antihydrogen
8. Applications of antimatter

Use matter and antimatter to study high energy interactions, and establish the standard model
I. Proton-antiproton collisions at Sp $\bar{p} S$
2. Positron-electron interactions (at KEK, SLC, LEP)
3. Proton-antiproton interactions at Fermilab
4. Proton-antiproton for meson spectroscopy

Antimatter (+matter) is a tool to produce new particles, but it also allows to study the couplings between different particle types.

Electroweak interactions (1970's)

Electroweak interactions (1970's)

Where do we get the antiquarks from?

QCD

Meson (q̄ $)$

Baryon (qqq)

QCD

Antibaryon ($\bar{q} \bar{q} \bar{q})$

Collisional energy Q in parton-parton center-of-mass frame:

$$
Q^{2}=x_{1} x_{2} E^{2}{ }_{c m}
$$

The probability of a proton containing a parton of type i at the appropriate values of x_{1} and Q^{2} is given by a 'parton distribution function' (PDF), $f_{i}\left(x_{1}, Q^{2}\right)$ (must be measured, i.e. at H1/Zeus @ HERA)

Sum over all possible combinations of incoming partons and integrate over the momentum fractions x_{1} and x_{2}

$$
\sigma=\sum_{i, j=q, q, g} \int \mathrm{~d} x_{1} \mathrm{~d} x_{2} f_{i}\left(x_{1}, Q^{2}\right) \cdot \bar{f}_{j}\left(x_{2}, Q^{2}\right) \cdot \hat{\sigma}\left(Q^{2}\right)
$$

(anti)proton beam = broadband beam of (anti)partons
(initial-state partons have a high probability of radiating gluons before they collide, so not even the nominal energy is available)

Fraction of momentum carried by ...

Fraction of momentum carried by ...

The use of antiproton-proton collisions allows for a higher average energy of collisions between quarks and antiquarks than would be possible in proton-proton collisions.

This is because the valence quarks in the proton, and the valence antiquarks in the antiproton, tend to carry the largest fraction of the proton or antiproton's momentum.

The use of antiproton-proton collisions allows for a higher average energy of collisions between quarks and antiquarks than would be possible in proton-proton collisions.

This is because the valence quarks in the proton, and the valence antiquarks in the antiproton, tend to carry the largest fraction of the proton or antiproton's momentum.
= poor man's high-energy collider

$\mathrm{Sp} \overline{\mathrm{P}}$ (${ }^{\left(9800_{s}^{\prime}\right)}$

valence quarks

sea quarks

requires antiprotons

requires significantly higher energy
$\sigma\left(\mathrm{p} \overline{\mathrm{p}} \rightarrow \mathrm{W}^{ \pm} \rightarrow \mathrm{e}^{ \pm}+\nu\right) \simeq 0.4 \times 10^{-33} k \mathrm{~cm}^{2}$

$$
\sqrt{s}=540 \mathrm{GeV}
$$

Design luminosity: $10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Sp $\overline{\mathrm{P}}$ (${ }^{1980 \mathrm{~s})}$

valence quarks

sea quarks

requires antiprotons

requires significantly higher energy

$$
\sigma\left(\mathrm{p} \overline{\mathrm{p}} \rightarrow \mathrm{~W}^{ \pm} \rightarrow \mathrm{e}^{ \pm}+\nu\right) \simeq 0.4 \times 10^{-33} \mathrm{kcm}^{2}
$$

$$
\sqrt{s}=540 \mathrm{GeV}
$$

Design luminosity: $10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
We can now report successful storage of protons and antiprotons at 270 GeV with lifetimes of several hours. Typically two bunches of 5×10^{10} protons each were colliding against one bunch of about 10^{9} antiprotons, giving an initial luminosity of 2×10^{25} $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ per interaction point in these first runs.

Sp $\overline{\mathrm{P}}$ (${ }^{1980 \mathrm{~s})}$

valence quarks

sea quarks

requires antiprotons

requires significantly higher energy

$$
\sigma\left(\mathrm{p} \overline{\mathrm{p}} \rightarrow \mathrm{~W}^{ \pm} \rightarrow \mathrm{e}^{ \pm}+\nu\right) \simeq 0.4 \times 10^{-33} k \mathrm{~cm}^{2}
$$

$$
\sqrt{s}=540 \mathrm{GeV}
$$

Design luminosity: $10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
We can now report successful storage of protons and antiprotons at 270 GeV with lifetimes of several hours. Typically two bunches of 5×10^{10} protons each were colliding against one bunch of about 10^{9} antiprotons, giving an initial luminosity of 2×10^{25} $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ per interaction point in these first runs.

Sp $\overline{\mathrm{P}}$ (${ }^{1980 \mathrm{~s})}$

valence quarks

sea quarks

requires antiprotons

requires significantly higher energy

$$
\sigma\left(\mathrm{p} \overline{\mathrm{p}} \rightarrow \mathrm{~W}^{ \pm} \rightarrow \mathrm{e}^{ \pm}+\nu\right) \simeq 0.4 \times 10^{-33} k \mathrm{~cm}^{2}
$$

$$
\sqrt{s}=540 \mathrm{GeV}
$$

Design luminosity: $10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
We can now report successful storage of protons and antiprotons at 270 GeV with lifetimes of several hours. Typically two bunches of 5×10^{10} protons each were colliding against one bunch of about 10^{9} antiprotons, giving an initial luminosity of 2×10^{25} $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ per interaction point in these first runs.

Sp $\overline{\mathrm{P}}$ (${ }^{1980 \mathrm{~s})}$

valence quarks

sea quarks

requires antiprotons

requires significantly higher energy

$$
\sigma\left(\mathrm{p} \overline{\mathrm{p}} \rightarrow \mathrm{~W}^{ \pm} \rightarrow \mathrm{e}^{ \pm}+\nu\right) \simeq 0.4 \times 10^{-33} k \mathrm{~cm}^{2}
$$

$$
\sqrt{s}=540 \mathrm{GeV}
$$

Design luminosity: $10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
We can now report successful storage of protons and antiprotons at 270 GeV with lifetimes of several hours. Typically two bunches of 5×10^{10} protons each were colliding against one bunch of about 10^{9} antiprotons, giving an initial luminosity of 2×10^{25} $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ per interaction point in these first runs.

UAI results
 I) how to detect W

$$
\overline{\mathrm{p}}+\mathrm{p} \rightarrow \mathrm{~W}^{ \pm}+\mathrm{X}, \mathrm{~W} \rightarrow \mathrm{e}^{ \pm}+\nu ;
$$

- isolated large E_{T} electrons
- isolated large E_{T} neutrinos

Arnison, G. et al. (UA1 Collaboration). Experimental observation of isolated large transverse energy electrons with associated missing energy at $\mathrm{s}=540 \mathrm{GeV}$. Phys. Lett. B 122, 103-116 (1983)

UAI results

I) how to detect W

$$
\overline{\mathrm{p}}+\mathrm{p} \rightarrow \mathrm{~W}^{ \pm}+\mathrm{X}, \mathrm{~W} \rightarrow \mathrm{e}^{ \pm}+\nu ;
$$

- isolated large E_{T} electrons
- isolated large E_{T} neutrinos

Arnison, G. et al. (UA1 Collaboration). Experimental observation of isolated large transverse energy electrons with associated missing energy at $\mathrm{s}=540 \mathrm{GeV}$. Phys. Lett. B 122, 103-116 (1983)

UAI results
 I) how to detect W

$$
\overline{\mathrm{p}}+\mathrm{p} \rightarrow \mathrm{~W}^{ \pm}+\mathrm{X}, \mathrm{~W} \rightarrow \mathrm{e}^{ \pm}+\nu ;
$$

- isolated large E_{T} electrons
- isolated large E_{T} neutrinos

Arnison, G. et al. (UA1 Collaboration). Experimental observation of isolated large transverse energy electrons with associated missing energy at $\mathrm{s}=540 \mathrm{GeV}$. Phys. Lett. B 122, 103-116 (1983)

UAI results
 I) how to detect W

$$
\overline{\mathrm{p}}+\mathrm{p} \rightarrow \mathrm{~W}^{ \pm}+\mathrm{X}, \mathrm{~W} \rightarrow \mathrm{e}^{ \pm}+\nu ;
$$

- isolated large E_{T} electrons
- isolated large E_{T} neutrinos

Arnison, G. et al. (UA1 Collaboration). Experimental observation of isolated large transverse energy electrons with associated missing energy at $\mathrm{s}=540 \mathrm{GeV}$. Phys. Lett. B 122, 103-116 (1983)

UAI results

2) how to detect Z

$$
\text { or } \mu^{+}+\mu^{-}
$$

The paper is based on an early analysis of a sample of collisions with an integrated luminosity of $55 \mathrm{nb}^{-1}$. In this event sample, $27 \mathrm{~W}^{ \pm} \rightarrow \mathrm{e}^{ \pm} \nu$ events have been recorded [5] ${ }^{\ddagger 2}$. According to minimal $\mathrm{SU}(2) \times \mathrm{U}(1)$, the Z^{0} mass is predicted to be [6] ${ }^{\neq 3} m_{\mathrm{Z}^{0}}=94 \pm 2.5$ GeV / c^{2}. The reaction (1) is then approximately a factor of 10 less frequent than the corresponding $\mathrm{W}^{ \pm}$leptonic decay channels [9] ${ }^{\neq 4}$.

- two isolated electrons
- two isolated muons

Arnison, G. et al. (UA1 Collaboration). Experimental observation of lepton pairs of invariant mass around $95 \mathrm{GeV} / c^{2}$ at the CERN SPS collider. Phys. Lett. B 126, 398-410 (1983).

\section*{UAI results 2) how to detect Z
 \[

\]}

The paper is based on an early analysis of a sample of collisions with an integrated luminosity of $55 \mathrm{nb}^{-1}$. In this event sample, $27 \mathrm{~W}^{ \pm} \rightarrow \mathrm{e}^{ \pm} \nu$ events have been recorded [5] ${ }^{\ddagger 2}$. According to minimal $\mathrm{SU}(2) \times \mathrm{U}(1)$, the Z^{0} mass is predicted to be [6] ${ }^{\neq 3} m_{Z^{0}}=94 \pm 2.5$ GeV / c^{2}. The reaction (1) is then approximately a factor of 10 less frequent than the corresponding $\mathrm{W}^{ \pm}$leptonic decay channels [9] ${ }^{\neq 4}$.

- two isolated electrons
 - two isolated muons

UAI results

2) how to detect Z

$$
\begin{aligned}
& \overline{\mathrm{p}}+\mathrm{p} \rightarrow \mathrm{Z}^{0}+\mathrm{X} \\
& \rightarrow \mathrm{e}^{+}+\mathrm{e}^{-} \text {or } \mu^{+}+\mu^{-}
\end{aligned}
$$

The paper is based on an early analysis of a sample of collisions with an integrated luminosity of $55 \mathrm{nb}^{-1}$. In this event sample, $27 \mathrm{~W}^{ \pm} \rightarrow \mathrm{e}^{ \pm} \nu$ events have been recorded [5] ${ }^{\ddagger 2}$. According to minimal $\mathrm{SU}(2) \times \mathrm{U}(1)$, the Z^{0} mass is predicted to be [6] ${ }^{\neq 3} m_{\mathrm{Z}^{0}}=94 \pm 2.5$ GeV / c^{2}. The reaction (1) is then approximately a factor of 10 less frequent than the corresponding $\mathrm{W}^{ \pm}$leptonic decay channels [9] ${ }^{\neq 4}$.

- two isolated electrons
 - two isolated muons

UAI results

2) how to detect Z

$$
\begin{aligned}
& \overline{\mathrm{p}}+\mathrm{p} \rightarrow \mathrm{Z}^{0}+\mathrm{X} \\
& \rightarrow \mathrm{e}^{+}+\mathrm{e}^{-} \text {or } \mu^{+}+\mu^{-}
\end{aligned}
$$

The paper is based on an early analysis of a sample of collisions with an integrated luminosity of $55 \mathrm{nb}^{-1}$. In this event sample, $27 \mathrm{~W}^{ \pm} \rightarrow \mathrm{e}^{ \pm} \nu$ events have been recorded [5] ${ }^{\ddagger 2}$. According to minimal $\mathrm{SU}(2) \times \mathrm{U}(1)$, the \mathbf{Z}^{0} mass is predicted to be $[6]{ }^{\ddagger 3} m_{\mathrm{Z}^{0}}=94 \pm 2.5$ GeV / c^{2}. The reaction (1) is then approximately a factor of 10 less frequent than the corresponding $\mathrm{W}^{ \pm}$leptonic decay channels [9] ${ }^{\neq 4}$.

- two isolated electrons
 - two isolated muons

UAI results

2) how to detect Z

$$
\begin{aligned}
\overline{\mathrm{p}}+\mathrm{p} \rightarrow & \mathrm{Z}^{0}+\mathrm{X} \\
& \mathrm{e}^{+}+\mathrm{e}^{-} \quad \text { or } \quad \mu^{+}+\mu^{-}
\end{aligned}
$$

The paper is based on an early analysis of a sample
 of collisions with an integrated luminosity of $55 \mathrm{nb}^{-1}$. In this event sample, $27 \mathrm{~W}^{ \pm} \rightarrow \mathrm{e}^{ \pm} \nu$ events have been recorded [5] ${ }^{\ddagger 2}$. According to minimal $\mathrm{SU}(2) \times \mathrm{U}(1)$, the \mathbf{Z}^{0} mass is predicted to be [6] ${ }^{ \pm 3} m_{\mathrm{Z}^{0}}=94 \pm 2.5$ $\mathrm{GeV} / \mathrm{c}^{2}$. The reaction (1) is then approximately a factor of 10 less frament than tite corresponding $W^{ \pm}$leptonic decay channels [9] ${ }^{\neq 4}$.

- two isolated electrons
 - two isolated muons

invariant mass of two EM clusters [GeV]

Arnison, G. et al. (UA1 Collaboration). Experimental observation of lepton pairs of invariant mass around $95 \mathrm{GeV} / \mathrm{c}^{2}$ at the CERN SPS collider. Phys. Lett. B 126, 398-410 (1983).

UAI results

2) how to detect Z

$$
\overline{\mathrm{p}+p \rightarrow} \mathrm{Z}^{\mathrm{Z}^{0}+\mathrm{X}} \underset{\mathrm{e}^{+}+\mathrm{e}^{-}}{ } \text {or } \mathrm{H}_{\text {events }}^{\mu^{+}+\mu^{-}}
$$

The paper is based on an early analysis of a sample of collisions with an integrated luminosity of $55 \mathrm{nb}^{-1}$. In this event sample, $27 \mathrm{~W}^{ \pm} \rightarrow \mathrm{e}^{ \pm} \nu$ events have been recorded [5] ${ }^{\ddagger 2}$. According to minimal $\mathrm{SU}(2) \times \mathrm{U}(1)$, the Z^{0} mass is predicted to be $[6]{ }^{\ddagger 3} m_{\mathrm{Z}^{0}}=94 \pm 2.5$ $\mathrm{GeV} / \mathrm{c}^{2}$. The reaction (1) is then approximately a ricctor of 10 less frament than itic corresponding $W^{ \pm}$leptonic decay channels [9] ${ }^{\neq 4}$.

- two isolated electrons
 - two isolated muons

Arnison, G. et al. (UA1 Collaboration). Experimental observation of lepton pairs of invariant mass around $95 \mathrm{GeV} / c^{2}$ at the CERN SPS collider. Phys. Lett. B 126, 398-410 (1983).

invariant mass of two EM clusters [GeV]

Comparing $\overline{\mathrm{P}} \mathrm{p}$ with $\mathrm{e}^{+} \mathrm{e}^{-}$

Comparing $\overline{\mathrm{P}}$ with $\mathrm{e}^{+} \mathrm{e}^{-}$

$\mathrm{e}^{+} \mathrm{e}^{-}$colliders up to LEP

W pair production (LEP2)

 many (confirming) results..... but the t was is still missing....

Interference effects in $e^{+} e^{-} \rightarrow f \bar{f}$

Interference effects in $e^{+} e^{-} \rightarrow f \bar{f}$

Interference effects in $e^{+} e^{-} \rightarrow f \bar{f}$

interference from presence of axial+vector couplings of leptons, quarks to Z

$$
\frac{d \sigma_{f \bar{f}}}{d \cos \theta}=\frac{3}{8} \sigma_{f \bar{f}}\left(1+\cos ^{2} \theta+\frac{8}{3}\left(A_{F B}^{f}\right) \cos \theta\right)
$$

Interference effects in $e^{+} e^{-} \rightarrow f \bar{f}$

interference from presence of axial+vector couplings of leptons, quarks to Z

$$
\frac{d \sigma_{f \bar{f}}}{d \cos \theta}=\frac{3}{8} \sigma_{f \bar{f}}\left(1+\cos ^{2} \theta+\frac{8}{3}\left(A_{F B}^{f}\right) \cos \theta\right),
$$

Effects small and swamped by huge Z exchange cross section on Z pole

$$
A_{F B}^{c}=-0.47,
$$

$$
A_{F B}^{b}=-0.59
$$

TRISTAN at KEK $(60 \mathrm{GeV})$

TRISTAN at KEK $(60 \mathrm{GeV})$

ALEPH at LEP $(90 \mathrm{GeV})$

LEP and SLD

Figure 5. The measurements of the combined $\mathrm{LEP}+\mathrm{SLD} \mathcal{A}_{l}$ (vertical band), SLD \mathcal{A}_{b} (horizontal band) and LEP $A_{\mathrm{FB}}^{b, 0}$ (diagonal band), compared to the Standard Model expectation (arrow).

precision measurements were sensitive to m_{t} before top was discovered (and also sensitive to m_{H})

Tevatron:
 top physics
 W physics
 search for Higgs

Tevatron:
top physics
W physics
search for Higgs
a

Tevatron:

top physics
 W physics

search for Higgs

Tevatron:

top physics
W physics search for Higgs

Tevatron: Discovery of the Top-Quark

FNAL: 1995
Tevatron : $\sqrt{\mathrm{s}}=1.8 \mathrm{TeV}$
Detectors: CDF, D \varnothing

Trigger on high $\mathrm{p} \perp$ and secondary (b) vertex

Tevatron: Discovery of the Top-Quark

FNAL: 1995
Tevatron : $\sqrt{\mathrm{s}}=1.8 \mathrm{TeV}$
Detectors : CDF, D \varnothing

Trigger on high $\mathrm{p} \perp$ and secondary (b) vertex

on to the Higgs; why not $\overline{\mathrm{P} p}$?

all perfectly respectable production mechanisms, but ...

on to the Higgs; why not $\overline{\mathrm{P} p}$?

all perfectly respectable production mechanisms, but ...

Advantages of $\overline{\mathrm{p}}-\mathrm{p}$ vs. $\mathrm{p}-\mathrm{p} \quad$ Advantages of $\mathrm{p}-\mathrm{p}$ vs. $\mathrm{p} \overline{\mathrm{p}}$

Advantages of $\overline{\mathrm{p}}-\mathrm{p}$ vs. $\mathrm{p}-\mathrm{p}$
higher reaction rates at low ($\sim \mathrm{ITeV}$) energies for specific processes

Advantages of $\mathrm{p}-\mathrm{p}$ vs. $\mathrm{p}-\overline{\mathrm{p}}$

higher reaction rates at high ($\sim 10 \mathrm{TeV}$) energies

Advantages of $\bar{p}-p$ vs. $p-p$

higher reaction rates at low ($\sim \mathrm{ITeV}$) energies for specific processes
quark-antiquark
fusion dominant at low energies

Advantages of p-p vs. $\mathrm{p}-\overline{\mathrm{p}}$

higher reaction rates at high ($\sim 10 \mathrm{TeV}$) energies
gluon fusion is dominant process in any hadronic machine at high energies

Advantages of $\bar{p}-p$ vs. $p-p$

higher reaction rates at low ($\sim \mathrm{ITeV}$) energies for specific processes
quark-antiquark
fusion dominant at low energies

Advantages of $\mathrm{p}-\mathrm{p}$ vs. $\mathrm{p}-\overline{\mathrm{p}}$

higher reaction rates at high ($\sim 10 \mathrm{TeV}$) energies
gluon fusion is dominant process in any hadronic machine at high energies
at high energies, gluon fusion is the dominant process, and the gluon pdf's are the same for p as for \bar{p}

Advantages of $\overline{\mathrm{p}}-\mathrm{p}$ vs. $\mathrm{p}-\mathrm{p}$

higher reaction rates at low
($\sim \mathrm{ITeV}$) energies for specific processes
quark-antiquark
fusion dominant at low energies

Advantages of $\mathrm{p}-\mathrm{p}$ vs. $\mathrm{p}-\overline{\mathrm{p}}$

higher reaction rates at high ($\sim 10 \mathrm{TeV}$) energies
gluon fusion is dominant process in any hadronic machine at high energies
at high energies, gluon fusion is the dominant process, and the gluon pdf's are the same for p as for \bar{p}
one single set of magnet rings (counter-propagating beams, same charges)
two magnet rings required (counter-propagating beams, opposite charges)

Advantages of $\overline{\mathrm{p}}$-p vs. p-p

higher reaction rates at low
($\sim \mathrm{ITeV}$) energies for specific processes
fusion dominant at low energies

Advantages of $p-p$ vs. $\mathrm{p}-\overline{\mathrm{p}}$

higher reaction rates at high ($\sim 10 \mathrm{TeV}$) energies
gluon fusion is dominant process in any hadronic machine at high energies
at high energies, gluon fusion is the dominant process, and the gluon pdf's are the same for p as for \bar{p}
one single set of magnet rings (counter-propagating beams, same charges)
two magnet rings required (counter-propagating beams, opposite charges)
far easier production of projectiles (antiproton production and cooling is still very difficult and inefficient)

Overview:

I. Introduction and overview
2. Antimatter at high energies (SppS, LEP, Fermilab)
3. Meson spectroscopy (antimatter as QCD probe)
4.Astroparticle physics and cosmology
5. CP and CPT violation tests
6. Precision tests with Antimatter
7. Precision tests with Antihydrogen
8. Applications of antimatter

Testing QCD with antimatter

QCD

q̄ states

Classification scheme: multiplets

$$
\begin{aligned}
& \mathrm{P}(\overline{\mathrm{q} q})=(-1)^{\mathrm{L}} \\
& \mathrm{C}(\overline{\mathrm{q}} \mathrm{q})=(-1)^{\mathrm{L}+\mathrm{S}}
\end{aligned}
$$

3 quarks: $\mathrm{SU}(3) 3 \otimes 3=8 \oplus \mathrm{I}$ symmetry breaking through quark mass differenc
But of course, there are gluons, virtual quark-antiquark pairs, leading to a whole cryptozoology of exotics (glueballs, hybdrids, pentaquarks, ...)

Testing the quark model = search for non- $\bar{q} q$ states

fermionic system

$$
\mathrm{P}(\overline{\mathrm{q}} \mathrm{q})=(-1)^{\mathrm{L}}
$$

$$
C(\overline{\mathrm{q}} q)=(-1)^{\mathrm{L}+\mathrm{S}}
$$

mesons
bosonic system

$$
\begin{aligned}
& \mathrm{P}=(-1)^{\mathrm{L}+1} \\
& \mathrm{C}=(-1)^{\mathrm{L}+\mathrm{S}}
\end{aligned}
$$

glueballs

color charge: gluons couple to other gluons and
can form
bound states

The glueball spectrum predicted by lattice calculations [10]. Exotic quantum numbers are marked as boxes.

Evidence for gluons: $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

The idea of searching for gluon jets had actually been proposed by John Ellis, Mary Gaillard and Graham Ross in a seminal paper that appeared in 1976. Under the apparently imperative title "Search for Gluons in $\mathrm{e}^{+}-\mathrm{e}^{-}$ Annihilation", the authors suggested the existence of "hard-gluon bremsstrahlung", which should give rise to events with three jets in the final state.According to the laws of field theory, the outgoing quarks can radiate field quanta of the strong interaction, i.e. gluons, which should in turn fragment into hadrons and thus create a third hadron jet forming a plane with the other two (see figure I). At the particle energies of up to 15 GeV per beam delivered by DESY's newly built PETRA electronpositron storage ring, the probability for such hard-gluon bremsstrahlung processes to occur might amount to a few percent.

Fig. 10.19 The same as Fig. 10.17 except that this event is one of the rare, separated, three jet events. The total energy is 35.16 GeV .

TASSO experiment at DESY (PETRA, 1978)

Antiproton-proton annihilation (at rest)

Available energy $=2 m_{p} \quad$ <annihilation> $\sim 3 \pi$
Dalitz plot (any 3-body final state)
m^{2} is relativistically invariant; plot $\mathrm{m}^{2}{ }_{12}$ vs. $\mathrm{m}^{2}{ }_{23}$
energy-momentum conservation $=$ limits of contour
no resonances $=$ uniform population intermediate states $=$ structures

http://superweak.wordpress.com/2006/07/3I/dalitz-plots/

$$
\mathrm{P} \overline{\mathrm{P}} \rightarrow 3 \pi^{0}
$$

Dalitz plot formalism

3-body decay of a spin 0 particle into pseudoscalars

$$
\Gamma=\frac{1}{(2 \pi)^{3} 32 \sqrt{s^{3}}}|\mathcal{M}|^{2} d m_{a b}^{2} d m_{b c}^{2}
$$

kinematic factors dynamics
$|\mathcal{M}|^{2}$ constant $=$ uniform population non-uniform population $=$ dynamics
helicity states
$R \rightarrow r c, r \rightarrow a b \quad \mathcal{M}_{r}\left(J, L, l, m_{a b}, m_{b c}\right)=\sum_{\lambda}\left\langle a b \mid r_{\lambda}\right\rangle T_{r}\left(m_{a b}\right)\left\langle c r_{\lambda} \mid R_{J}\right\rangle$ angular distribution
momenta in r rest frame K-matrix or ...

Review of Particle Physics 2000

$N^{2 S+1} L_{J}$	$J^{P C}$	$\begin{gathered} \mathrm{u} \overline{\mathrm{~d}}, \mathrm{u} \overline{\mathrm{u}}, \mathrm{~d} \overline{\mathrm{~d}} \\ I=1 \end{gathered}$	$\begin{aligned} & \text { uū, d } \mathrm{d}, \mathrm{~s}, \mathrm{~s} \\ & \quad I=0 \end{aligned}$	$\begin{aligned} & \overline{\mathrm{s} u}, \overline{\mathrm{~s} d} \\ & I=1 / 2 \end{aligned}$
$1{ }^{1} S_{0}$	0^{-+}	π	η, η^{\prime}	K
$1{ }^{3} S_{1}$	1^{--}	ρ	ω, ϕ	K*(892)
$1{ }^{1} P_{1}$	1^{+-}	$\mathrm{b}_{1}(1235)$	$\mathbf{h}_{\mathbf{1}}(1170), \mathrm{h}_{1}(1380)$	$\mathrm{K}_{\mathbf{1 B}}{ }^{\dagger}$
$1{ }^{3} P_{0}$	0^{++}	$\mathrm{a}_{0}(1450)^{*}$	$\mathrm{f}_{0}(1370)^{*}, \mathrm{f}_{0}(1710)^{*}$	$\mathrm{K}_{0} *(1430)$
$1{ }^{3} P_{1}$	1^{++}	$\mathrm{a}_{1}(1260)$	$\mathrm{f}_{1}(1285), \mathrm{f}_{\mathbf{1}}(1420)$	$\mathrm{K}_{\mathbf{1 A}}{ }^{\dagger}$
$1{ }^{3} P_{2}$	2^{++}	$\mathrm{a}_{2}(1320)$	$\mathbf{f}_{2}(\mathbf{1 2 7 0}), \mathrm{f}_{2}{ }^{\prime}(\mathbf{1 5 2 5})$	$\mathrm{K}_{2}{ }^{*}(\mathbf{1 4 3 0})$
$1{ }^{1} D_{2}$	2^{-+}	$\pi_{2}(1670)$	$\eta_{2}(1645), \eta_{2}(1870)$	$K_{2}(1770)$
$1{ }^{3} D_{1}$	1^{--}	$\rho(1700)$	$\omega(1650)$	K* (1680) ${ }^{\text {\# }}$
$1{ }^{3} D_{2}$	2^{--}			$\mathrm{K}_{\mathbf{2}}(\mathbf{1 8 2 0})$
$1{ }^{3} D_{3}$	3^{--}	$\rho_{3}(1690)$	$\omega_{3}(\mathbf{1 6 7 0}), \phi_{3}(1850)$	$\mathrm{K}_{3} *(1780)$
$1{ }^{3} F_{4}$	4^{++}	$\mathrm{a}_{4}(2040)$	$\mathrm{f}_{4}(\mathbf{2 0 5 0}), \mathrm{f}_{4}(2220)$	$\mathrm{K}_{4}{ }^{*} \mathbf{(2 0 4 5)}$
$2{ }^{1} S_{0}$	0^{-+}	$\pi(1300)$	$\eta(1295), \eta(1440)$	K(1460)
$2{ }^{3} S_{1}$	1^{--}	$\rho(1450)$	$\omega(1420), \phi(1680)$	$K *(1410)^{\ddagger}$
$2{ }^{3} P_{2}$	2^{++}		$\mathrm{f}_{2}(1810), \mathbf{f}_{\mathbf{2}} \mathbf{(2 0 1 0)}$	$\mathrm{K}_{2}{ }^{*}(1980)$
$3{ }^{1} S_{0}$	0^{-+}	$\pi(1800)$	$\eta(1760)$	K(1830)

significant contributions, but:

- mass range limited
- states are broad
- no good theory predictions
- need input from other production mechanisms

"cleaner" systems

"cleaner" systems

"cleaner" systems

charmonium is the positronium of QCD

Charmonium Spectrum

Charmonium Spectrum
 "atomic" spectroscopy of c \bar{c} system

Charmonium Spectrum

"atomic" spectroscopy of c \bar{c} system
clean data but... picture is incomplete

Production:

$$
\begin{aligned}
& \text { Crystal Ball }
\end{aligned}
$$

Formation:

\[

\]

$$
\sigma_{\mathrm{m}}(\text { beam })=0.5 \mathrm{MeV}
$$

Production:

$$
\begin{aligned}
& \text { Crystal Ball }
\end{aligned}
$$

Formation:

\[

\]

resolution limited by knowledge of accelerator frequency
... in spite of many years of efforts, no clean understanding of low energy QCD. It is still a field with many open questions...

HEP however has mostly moved on ...
... in spite of many years of efforts, no clean understanding of low energy QCD. It is still a field with many open questions...

HEP however has mostly moved on ...

The end

(Actually, not really. Rather, the beginning: tomorrow, we go back to the Big Bang)

