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Overview:

|. Introduction and overview
2.Antimatter at high energies (SppS, LEP, Fermilab)
3. Meson spectroscopy (antimatter as QCD probe)

4.Astroparticle physics and cosmology
5. CP and CPT violation tests

6. Precision tests with Antimatter

/. Precision tests with Antihydrogen
8.Applications of antimatter
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Introduction and overview
|.A bit of theory

2.A bit of history

3. The making of...
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Schrédinger:
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E = > ih—p =—— V
2m é’tw 2m v
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classical energy- acts on wavefuntion

momentum relation Y( x, t)
2 07 2
Schrédinger: E = > h—1 =——— quj
2m ot 2m
non-relativistic
E — ih%
relativistic energy- » — —inv differential operators
momentum relation
0»,2

Klein-Gordon: |E* = p*+m” —

-y =-h" VY +my
ot
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classical energy- acts on wavefuntion

momentum relation Y( x, 1)
2 2
Schrédinger: E = P __ ihiq} o Vzw
2m ot 2m
non-relativistic
E — ih%
relativistic energy- p — —inv, differential operators

momentum relation

. J’
Klein-Gordon: |E* = p2 +m°— - ?q) =-h’ quj + mzw
relativistic, spin O

energy Eigenvalues (free particle) (number of particles not conserved)
E=+/- (p2+m2)|/2

negative energy solutions with
negative probability density

Lectures on Antimatter Michael Doser / CERN

Monday, July 30,2012



classical energy- acts on wavefuntion

momentum relation Y( x, 1)
2 2
Schrédinger: E = P __ ihiq} o Vzw
2m ot 2m
non-relativistic
E — ih%
relativistic energy- p — —inv, differential operators

momentum relation

. J’
Klein-Gordon: |E* = p2 +m°— - ?q) =-h’ quj + mzw
relativistic, spin O

energy Eigenvalues (free particle) (number of particles not conserved)
E=+/- (p2+m2)|/2

negative energy solutions with
negative probability density

DiI'CICI linear in,% and V
Lectures on Antimatter Michael Doser / CERN
Monday, July 30,2012




classical energy- acts on wavefuntion

momentum relation Y( x, 1)
2 2
Schrédinger: E = P __ ihiq} o Vzw
2m ot 2m
non-relativistic
E — ih%
relativistic energy- p — —inv, differential operators

momentum relation

. J’
Klein-Gordon: |E* = p2 +m°— - ?q) =-h’ quj + mzw
relativistic, spin O

energy Eigenvalues (free particle) (number of particles not conserved)
E=+/- (p2+m2)|/2

negative energy solutions with
negative probability density

- : . .9 .
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relativistic, spin O

energy Eigenvalues (free particle) (number of particles not conserved)
E=+/- (p2+m2)|/2

negative energy solutions with
negative probability density

DiI'CICI linear in,g and V

57 general form: | Hq) = (a P+ ﬁm)¢

energy-momentum relationship: ~ H”¢ = (P? +m?*)y
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HYy = (a-P+ Bm)y

H*Y = (o, P; + Bm)(a; Py + Bm)y
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H = (a-P 4 fm)i
H?) = (0 P; + Bm)(a; Pj + fm)y

= (O@Pf + (o + ;) P Py + (a8 + Bay) Pem + ﬁ2m2)¢
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HYy = (a-P+ Bm)y

H*p = (P? 4+ m?)y

H?) = (0 P; + Bm)(a; Pj + fm)y /
= ((X%PE -+ (sz'()éj + Oéj()éi)Pin -+ (Oézﬁ + ﬁozz)sz -+ 52m2)¢
1
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HYy = (a-P+ Bm)y

H*p = (P? 4+ m?)y

H* = (; P; + pm)(a; P; + Bm)y /
= (O@Pf + (oo + ajag ) P Py + (a8 + Bay) Pem + 52m2)¢
1 0]
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HYy = (a-P+ Bm)y

H*p = (P? 4+ m?)y

= (@i P? + (i + o) PPy + (q 8 4 Ba) Pem + 32m?)y)
1 0 0 1
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HYy = (a-P+ Bm)y

H?¢ = (P* + m*)y
H*Y = (o, P; + Bm)(a; Py + Bm)y

e

= (a7 P} + (ioj + o) PPy + (i B + Boy) Pym + 2m? )ap
1 0] 0] 1

a1, a2,a3,8 anticommute with each other

af=a3=ai=03*=1
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HYy = (a-P+ Bm)y

H?Y = (P? +m?)y

H?Y = (& P + fm) (o Py + pm)ip /
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HYy = (a-P+ Bm)y
H2 = (P% +m?)y

H?Y = (& P + fm) (o Py + pm)ip /

= (a7 P} + (o + o) PiPy + (i B + Boy) Pym + 2m? )i
1 0] 0] 1

a1, a2, a3,8 anticommute with each other

af =as=ai=03*=1

lowest dim. matrices: 4x4 ; Pauli-Dirac representation
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<8
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HYy = (a-P+ Bm)y

H?Y = (P? +m?)y

H2¢ — (C\{Q;P@' —+ 5m)(oszj -+ 6m)¢ /

= (a7 P} + (o + o) PPy + (i B + Boy) Pym + (2m? )i
1 0] 0] 1

a1, a2, a3,8 anticommute with each other

a%:a'%:a§:ﬁ2:1
relativistic, spin 1/2
lowest dim. matrices: 4x4 ; Pauli-Dirac representation (number of particles conserved)

770 : 4-component column vector (Dirac spinor)
(E>0,+1/2);(E>0,-1/2);(E<0,+1/2);(E<0,-1/2)

X[
R A
i85y = —ifaVy + my

("0, —m)yY =0
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Benefit of hindsight: Quantum Field Theory
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Benefit of hindsight: Quantum Field Theory

The electron (field) is no longer described by a wave function but an operator that
creates and destroys particles. All energies are positive.
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The electron (field) is no longer described by a wave function but an operator that
creates and destroys particles. All energies are positive.

Light cone

Observer #1 : A happens before B
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Benefit of hindsight: Quantum Field Theory

The electron (field) is no longer described by a wave function but an operator that
creates and destroys particles. All energies are positive.

Light cone .
Al An electron can emit a photon at A,

propagate a certain distance, and

then absorb another photon at B.

Observer #1 : A happens before B
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Wave function only localized within Compton wave length (A ~ 1/m).
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Wave function only localized within Compton wave length (A ~ 1/m).

Light cone

Quantum relativity: electron wave function
can be outside the light cone
(Compton wave length | = h/m.c)

Lectures on Antimatter

For a moving observer, event B can therefore
happen before event A. The process at B is

then interpreted as 'pair creation’.
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Wave function only localized within Compton wave length (A ~ 1/m).

Light cone

A
2
Quantum relativity: electron wave function For a moving observer, event B can therefore
canbe outside the light cone happen before event A. The process at B is
(Compton wave length | = h/m,.c) then interpreted as 'pair creation'.

"One observer's electron is the other observer's positron”
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Wave function only localized within Compton wave length (A ~ 1/m).

Light cone

A
2
Quantum relativity: electron wave function For a moving observer, event B can therefore
canbe outside the light cone happen before event A. The process at B is
(Compton wave length | = h/m,.c) then interpreted as 'pair creation'.

"One observer's electron is the other observer's positron”

Causality requires antiparticles to exist
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Antimatter:

1932 - Anderson discovers the 1955 - intentional production of
positron in‘cosmic rayi. antiprotons in an accelerator

'y
" L, | g |
this ' | | .:. ¥y
way s ‘ N
up v ..

Cloud chamber photograph by Andersen ™ Energy release 1350 + 50 MeV > m,
Phys. Rev. 43, 491 (1933) B Total 35 annihilations!

Nobel prize 1936 = Chamberlain et al.,, Phys. Rev. 102, 902 (1956)
®  final proof of antimatter character
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Discovery of the Antiproton

* Bevatron 5.6 GeV
* Just at threshold!

}
2.5} PER 10° 7~
* Discrimination against TT": measure | /t\

* Momentum
* Magnets: |.19 GeV

* Velocity
* TOF 51 vs.40 ns

 Cherenkov counter veto

* 60 events in 1955

* Am/mp ~ 5%

* O. Chamberflain, E. Segre,
C.Wiegand, I.Ypsilantis,
Phys. Rev. 100, 947 (1955)

* Nobelprize Chamberlain &
Segre 1959
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Discovery of the Antiproton

* Bevatron 5.6 GeV SRS S

* Just at threshold! ) } No.or awTieRoroNs
* Discrimination against TT: measure /t\
* Momentum
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T
Q.5

0 A4 g

1 1 1
0.85 I 09% 1,00 LOS LIO .20
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Phys. Rev. 100, 947 (1955)

* Nobelprize Chamberlain &
Segre 1959
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SHIELDING
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Study antimatter

Baryon asymmetry

Investigate symmetries

Hubble Deep Field
Hubble Space Telescope - WFPC2
[ TN N s
PRC96-01a + ST Scl OPO - January 15, 1995 « R. Williams (ST Scl), NASA
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Baryon asymmetry

Investigate symmetries

. i $
' i -
. = & v 3
e i : '
- . ' N v ; i
r- 4, - . ..
- % i .
.'v - " .
i g Y e g W
’ ’ X P
- \.' ! ¥ ‘.
. £ tw
. 3 %
* . ¥ »
. . 5
R " a S
¥ - .
¥ ¥
. ¢ A
¥ % ™
P ) . " A o
’ v
. . ! Py
. N " . L 5 o
» ' it
35 *
. -
g Yoy i S
. - - v
o #
.
- 8 v.. < -
" . ’ 2
e et e
- 3 3 b .
. ¢
» - - )4
b
. .
5 '
e
-
] » .
-

Hubble Deep Field
Hubble Space Telescope - WFPC2
[ J
[ TN N s
U S e a n tI m atte r a s to o I PRC96-01a + ST Scl OPO « January 15, 1995 + R. Williams (ST Scl), NASA PRC96-01a + ST Scl OPO - January 15, 1995 « R. Williams (ST Scl), NASA

Matter-antimatter annihilation: source of new particles

Investigate symmetries
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Study antimatter

Baryon asymmetry

Investigate symmetries
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Hubble Deep Field
Hubble Space Telescope - WFPC2
[ J
[ TN N s
U S e a n tI m atte r a s to o I PRC96-01a + ST Scl OPO « January 15, 1995 + R. Williams (ST Scl), NASA PRC96-01a + ST Scl OPO - January 15, 1995 « R. Williams (ST Scl), NASA

Matter-antimatter annihilation: source of new particles

Investigate symmetries

need to make it, though...
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Production Energy  pN — pXpp

TABLE II. Comparison of CERN and Fermilab antiproton sources: for Fermilab the upgrading
program quoted in Church and Marriner (1993) has been anticipated: for CERN the measured yield
with magnetic horn has been used.

CERN
Antiproton Collector

Fermilab

Machine debuncher

100

Production momentum (GeV/e) 26 120
Collection momentum (GeV/e) 35 9
p/sr/GeV/el/Interacting p 0.013 0.25
Acceptances Ay (7 mm mrad) 200 25
A, (m mm mrad) 200 25
Aplpx10~3 6 40
VALA X Ap/p( 7 mm mradX | 12x10° 107
Yield (5/p) 3.5x107° 14x10°°
Protons per pulse 1.5x 10" 0.5x 10"
Antiprotons per puls 5x 107 7x 107
Differential cross-section, maximum
10 0'|C)('J — I T !
II ! : -
7 e > 5 S— =
7 5 D — -
1 = s - O B | =
f -
Es
-—
c® - | >
0.1 e N mm—— Q > 10 - / =
EE sF - -
S - o
| &= = L/
0-01 .QE 2 o T
- o
ya £ 1 - Ll | Ll
s A 10 20 50 100 200 500
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Overview:

|. Introduction and overview
2.Antimatter at high energies (SppS, LEP, Fermilab)
3. Meson spectroscopy (antimatter as QCD probe)

4.Astroparticle physics and cosmology
5. CP and CPT violation tests

6. Precision tests with Antimatter

/. Precision tests with Antihydrogen
8.Applications of antimatter
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Use matter and antimatter to study high energy
interactions, and establish the standard model

|. Proton-antiproton collisions at SppS

2. Positron-electron interactions (at KEK, SLC, LEP)
3. Proton-antiproton interactions at Fermilab

4. Proton-antiproton for meson spectroscopy

Antimatter (+matter) is a tool to produce new
particles, but it also allows to study the couplings
between different particle types.
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Electroweak interactions (1970%)

u u/d
.I_
%% N\, Z
d u/d
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Electroweak interactions (1970%)

u u/d
W W Z
d u/d

Where do we get the antiquarks from!?
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QCD

Meson (qq) Baryon (qqq)
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QCD

Meson (qq)

Antibaryon (qqq)
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Collisional energy Q in parton-parton center-of-mass frame:

Q2 = X1X2E%cm

The probability of a proton containing a parton of type / at the appropriate
values of x1 and Q< is given by a 'parton distribution function' (PDF), fi(x1, Q%)

(must be measured, i.e. at H1/Zeus @ HERA )

Sum over all possible combinations of incoming partons and
integrate over the momentum fractions x1 and x:

= ¥ | J‘d.x‘] dits 16,5 OP) -1, ) . 0())

B | r
L =q,q.8

(anti)proton beam = broadband beam of (anti)partons

(initial-state partons have a high probability of radiating gluons before they collide,

so not even the nominal energy is available)
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Fraction of momentum carried by ...

1
xfg(x)
sea quarks X1
0.8 | 9 x£4(X)
Xfo(X)
06 | /
| valence quarks
!
0.4 } /
0 o—— - ha“
0 0.2 0.4 0.6 0.8
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The use of antiproton-proton collisions allows for
a higher average energy of collisions
between quarks and antiquarks
than would be possible in proton-proton collisions.

This is because the quarks in the proton,
and the antiquarks in the antiproton,
tend to carry the largest fraction of
the proton or antiproton's momentum.
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The use of antiproton-proton collisions allows for
a higher average energy of collisions
between quarks and antiquarks
than would be possible in proton-proton collisions.

This is because the quarks in the proton,
and the antiquarks in the antiproton,
tend to carry the largest fraction of

the proton or antiproton's momentum.

= poor man’s high-energy collider
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SppPS (1980%)

u u/d
w* W Z
valence quarks  _ - sea quarks
u

requires antiprotons requires significantly
higher energy

L

o(pp > W = et +v)=~0.4 X 10733 k cm?

Vs = 540 GeV

Design luminosity: 10%° cm-2s!
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SppPS (1980%)

u u/d
w* W Z
valence quarks  _ - sea quarks
u

requires antiprotons requires significantly
higher energy

L

o(pp > W = et +v)=~0.4 X 10733 k cm?

Vs = 540 GeV

We can now report successful storage of protons
and antiprotons at 270 GeV with lifetimes of several
hours. Typically two bunches of 5 X 1010 protons
each were colliding against one bunch of about 10°
antiprotons, giving an initial luminosity of 2 X 1023
cm—2s ! per interaction point in these first runs.

Design luminosity: 10%° cm-2s!
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SppPS (1980%)

u u/d
w* W Z
valence quarks  _ - sea quarks
u

requires antiprotons requires significantly
higher energy

L

o(pp > W = et +v)=~0.4 X 10733 k cm?

Vs = 540 GeV

We can now report successful storage of protons
and antiprotons at 270 GeV with lifetimes of several
hours. Typically two bunches of]5 X 1010]protons
each were colliding against one bunch of about 10°
antiprotons, giving an initial luminosity{of 2 X 10%°
cm—2s ! per interaction point in these first runs.

Design luminosity: 10%° cm-2s!
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SppPS (1980%)

u u/d
w* W Z
valence quarks  _ - sea quarks
u

requires antiprotons requires significantly
higher energy

L

o(pp > W = et +v)=~0.4 X 10733 k cm?

Vs =540 GeV

We can now report successful storage of protons
and antiprotons at 270 GeV with lifetimes of several
. . . hours. Typically two bunches of]5 X 1010]protons
Design luminosity: 10%° ¢cm™s™! each were colliding against one bunch of about[10°]
antiprotons, giving an initial luminosity{of 2 X 10%°
cm—2s ! per interaction point in these first runs.
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UAI results
|) how to detect W

p+p— W5+ X Woet+y

* isolated large Et electrons
* isolated large Et neutrinos

junk
—— u

wt

—d

junk

Arnison, G. et al. (UA1 Collaboration). Experimental observation of isolated large transverse energy
electrons with associated missing energy at s = 540 GeV. Phys. Lett. B 122, 103-116 (1983)
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EVENTS  WITHOUT JETS

[GeV]

UAI results LB 7
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|) how to detect W TS s
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qu) 30 y
7 3 A
- + + Jﬁg 20T / ]
p+p—=>W + X W-e™ +y; g
e -
* isolated large Et electrons
i : Pl NN RN
* isolated large Et neutrinos R

electron energy [GeV]

junk
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junk

Arnison, G. et al. (UA1 Collaboration). Experimental observation of isolated large transverse energy
electrons with associated missing energy at s = 540 GeV. Phys. Lett. B 122, 103-116 (1983)
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UAI results

|) how to detect W
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p+p— W5+ X Woet+y

* isolated large Et electrons
* isolated large Et neutrinos

junk

junk

Arnison, G. et al. (UA1 Collaboration). Experimental observation of isolated large transverse energy
electrons with associated missing energy at s = 540 GeV. Phys. Lett. B 122, 103-116 (1983)
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UAI results
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* isolated large Et electrons
* isolated large Et neutrinos
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Arnison, G. et al. (UA1 Collaboration). Experimental observation of isolated large transverse energy
electrons with associated missing energy at s = 540 GeV. Phys. Lett. B 122, 103-116 (1983)

Lectures on Antimatter

EVENTS  WITHOUT JETS

[GeV]

Y
A >\50— =1
. o0 ol
v S Vd
D /
?,GC) L0 ]L t/
7 4
A o P
1R 30 J
)

z > ]l/

I« S Pl J
~eg 20T

L G

)

A< 5
T s T 20 Cev
Events/20eV E

< T
2 1+
. NN &
0 10 20 30 L0 GeV
electron energy [GeV]
B b €
A
(BB (AEEEAREED) m
F
1 | - 1 1
20 40 60 80

m. (GeV/?2)

my = (81F32) GeV/c?

Michael Doser / CERN

Monday, July 30,2012



UAI results
2) how to detect £

ptp—~>Z0+X

I—>e"+e" or u¥+u

The paper is based on an early analysis of a sample
of collisions with an integrated luminosity of 55 nb—1,
In this event sample, 27 W* = e*p events have been
recorded [5] *2. According to minimal SU(2) X U(1),
the Z0 mass is predicted to be [6] ** mzo =94 % 2.5
GeV/c?. The reaction (1) is then approximately a fac-
tor of 10 less frequent than the corresponding W* lep-
tonic decay channels [9] *4.

e two isolated electrons
e two isolated muons

Arnison, G. et al. (UA1 Collaboration). Experimental observation of lepton pairs of invariant
mass around 95 GeV/c? at the CERN SPS collider. Phys. Lett. B 126, 398-410 (1983).
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2) how to detect Z '
- opn 1 1 Ao o

.l " snd Let s | at the end of
p+p—>20+X s ¢ ) a track
L E 0 1 H l-nﬂ i
+ — _ E . inal Cuts . .
et +e” or ut+yu T L e 1 “isolation”

i L . f'h L
0 50 100 150

, | invariant mass of two EM clusters [GeV]
The paper is based on an early analysis of a sample

of collisions with an integrated luminosity of 55 nb—1,
In this event sample, 27 W* = e*p events have been
recorded [5] *2. According to minimal SU(2) X U(1),
the Z0 mass is predicted to be [6] ** mzo =94 % 2.5
GeV/c?. The reaction (1) is then approximately a fac-
tor of 10 less frequent than the corresponding W* lep-
tonic decay channels [9] *4.

e two isolated electrons
e two isolated muons

Arnison, G. et al. (UA1 Collaboration). Experimental observation of lepton pairs of invariant
mass around 95 GeV/c? at the CERN SPS collider. Phys. Lett. B 126, 398-410 (1983).
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of collisions with an integrated luminosity of 55 nb—1,

In this event sample, 27 W* = e*p events have been
recorded [5] *2. According to minimal SU(2) X U(1),
the Z0 mass is predicted to be [6] ** mzo =94 % 2.5
GeV/c?. The reaction (1) is then approximately a fac-
tor of 10 less frequent than the corresponding W* lep-
tonic decay channels [9] *4.

e two isolated electrons
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Arnison, G. et al. (UA1 Collaboration). Experimental observation of lepton pairs of invariant
mass around 95 GeV/c? at the CERN SPS collider. Phys. Lett. B 126, 398-410 (1983).
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In this event sample, 27 W* = e*p events have been

recorded [5] *2. According to minimal SU(2) X U(1), , "

the Z0 mass is predicted to be [6] *3 Mzo =94 £ 2.5 < ‘o ¢ mean

GeV/c2. The reaction (1) is then approximately a fac- e s
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e two isolated electrons = P ———

invariant mass of lepton pairs [GeV

e two isolated muons \

Mo =(95.2 £ 2.5) GeV/c?

Arnison, G. et al. (UA1 Collaboration). Experimental observation of lepton pairs of invariant
mass around 95 GeV/c? at the CERN SPS collider. Phys. Lett. B 126, 398-410 (1983).
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Comparing pp with e*e
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Comparing pp with e*e

p
6(Q?) <
D
e' f e’ f
Y Z
e f e f
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e*e colliders up to LEP
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section

-

ALEPH, DELPHI, L3, OPAL, SLD collaborations, LEP Electroweak Working Group, the
SLD Electroweak and Heavy Flavour Groups. Precision electroweak measurements
on the Z resonance. Phys. Rep. 427, 257-454 (2006)
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WV pair production (LEP2)

e’ "W
2 o
= YFSWW and S S
DB
B A R || many (confirming) results.....
-=71| but the t was is still missing....
"1e0 | 180 200
Vs (GeV)
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Interference effects inete™ — ff
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Interference effects inete™ — ff
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Interference effects inete™ — ff

interference from presence of axial+vector couplings of leptons, quarks to Z

do sz 3 8
If 2 /
— —0;7(1 4+ cos“ 0+ —Arrcosb),
dcosf 8 ff( 3B )
Lectures on Antimatter Michael Doser / CERN
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Interference effects inete™ — ff

interference from presence of axial+vector couplings of leptons, quarks to Z

do ;7 3 8
dcofsfH — éaff—(l + cos” ) + §A£B cos ),

Effects small and swamped by huge Z exchange cross section on Z pole

A%B — _0.477
Ars depends on weak isospin, charge of quarks. At TRISTAN (60 GeV):

AL, = —0.59
Lectures on Antimatter Michael Doser / CERN
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TRISTAN at KEK (60 GeV)
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TRISTAN at KEK (60 GeV) ALEPH at LEP (90 GeV)
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LEP and SLD
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Figure 5. The measurements of the combined
LEP+SLD A; (vertical band), SLD A (horizon-

tal band) and LEP A%’]g (diagonal band), com-
pared to the Standard Model expectation (ar-
row).
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Tevatron: top physics
WV physics
search for Higgs
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Tevatron: top physics
WV physics
search for Higgs
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Tevatron: top physics
WV physics
search for Higgs
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Tevatron: Discovery of the Top-Quark
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Tevatron: Discovery of the Top-Quark

ENAL: 1995 revatron Vs =1.8 TeV
' Detectors : CDF, D@
from ~ :
Dominant A piww<’ o =4pb  (Highpt)
Production «¢-om 3 + (oTot=60 mb (10 o.m. bigger) (<pL >=0.5 GeV))
e Trigger on high p_L and secondary (b) vertex
%&
. a b R ———— ‘ m e
Dominant : ’ = _
et I:"';'- 9 W, ., " W, Teva}roh
Decay JET | == g ~; \(, ] Stahirohr
b, AN
jet jet
| a ___ Daten (153 Ereig) | 'O [ b __ Daten (34 Ereig) ' 3
- E@(Lglgt?:rgu';d [ &8 Untergrund {6.:; Ereig.) C \ 2 i e
20 | g. 8 e B2, ahad Untergrund + Top ,\\ o o
[ 3 - 3m R . v/ \
4 ‘”6:- Primar- __—» \
ué 31 Vertex A % Sekundar-
2« J | St <+ \Vertex-
310- 34:- <———=5 mm »E-”-iP—S—T
i [ =mt=(174.3 £ 5.1) GeV/c2

0 "
100 150 200 250 300 350
Masse [GeV]

100 150 200 250 300 350
Masse [GeV]

Lectures on Antimatter Michael Doser / CERN

o(pp) — ft in agreement with SM-predictions

Monday, July 30,2012



on to the Higgs; why not pp!?

ol
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production mechanisms, but ...
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Advantages of p-p vs. p-p Advantages of p-p vs. p-p

higher reaction rates at low higher reaction rates at
(~ 1 TeV) energies for specific high (~ 10 TeV) energies
processes
quark-antiquark gluon fusion is dominant process
fusion dominant at low energies in any hadronic machine at high energies

at high energies, gluon fusion is the dominant process,
and the gluon pdf’s are the same for p as for p

one single set of magnet rings two magnet rings required
(counter-propagating beames, (counter-propagating beames,
same charges) opposite charges)

far easier production of projectiles
(antiproton production and cooling
is still very difficult and inefficient)
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Overview:

|. Introduction and overview
2.Antimatter at high energies (SppS, LEP, Fermilab)
3. Meson spectroscopy (antimatter as QCD probe)

4.Astroparticle physics and cosmology
5. CP and CPT violation tests

6. Precision tests with Antimatter

/. Precision tests with Antihydrogen
8.Applications of antimatter
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Testing QCD with antimatter

QCD

Glueball (gg) Hybrid (qqg)
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qq states

P(qq) = (-D-

Classification scheme: multiplets -
P C(qq) = (-1)HS

3 quarks:SU(3) 3®3 =8® | symmetry breaking through quark mass differenc

But of course, there are gluons, virtual quark-antiquark pairs, leading to a whole
cryptozoology of exotics (glueballs, hybdrids, pentaquarks, ...)
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Testing the quark model = search for non-qq states

fermionic system bosonic system
P(qq) = (-D)" P= (1)Lt
. C(qq) = (-D"* C= (- "
mesons glueballs
[MeV]
., } i 7 000 color charge:
* " gluons couple to
| * \ $H { 4000 other gluons and
+ % + can form
. d bound states
-1 2000
e s
JPC

The glueball spectrum predicted by lattice calculations [10]. Exotic quantum
numbers are marked as boxes.
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Evidence for gluons: e*e™ annihilation

» 1

e/
.“

The idea of searching for gluon jets had actually been
proposed by John Ellis, Mary Gaillard and Graham Ross
in a seminal paper that appeared in 1976. Under the
apparently imperative title "Search for Gluons in e*-e-
Annihilation", the authors suggested the existence of
"hard-gluon bremsstrahlung”, which should give rise to
events with three jets in the final state. According to the
laws of field theory, the outgoing quarks can radiate field
.quanta of the strc?ng interaction, i.e. gluons, which ShOUId Fig. 10.19 The same as Fig. 10.17 except that this event is one of the|rare,

in turn fragment into hadrons and thus create a third separated, three jet events. The total energy is 35.16 GeV.

hadron jet forming a plane with the other two (see

figure 1). At the particle energies of up to 15GeV per :

beam delivered by DESY's newly built PETRA electron- TASSO experlment at DESY (PETRA’ | 978)
positron storage ring, the probability for such hard-gluon

bremsstrahlung processes to occur might amount to a

few percent.

-~
.
“ »

»

»
Foep
L TR

.
Y,..
4 '.
S T )

i)y

|

Lectures on Antimatter Michael Doser / CERN

Monday, July 30,2012



Antiproton-proton annihilation (at rest)

Available energy =2 m;

<annihilation> ~ 37

Dalitz plot (any 3-body final state)

m? is relativistically invariant;
plot m?12 vs.m%;

energy-momentum conservation
= limits of contour

no resonances = uniform population
intermediate states = structures

Lectures on Antimatter

D; > KKz Preliminary
~ 2.5r iRt A— -
-~ A 1020 :
>
3
e S
e ]
E 1.5/ ‘
1
I
0.5
]

| 3 | N , 3
85 1 ¥ e T SRasy e T Rty
m{K K*)? (GeV*/ic")

http://superweak.wordpress.com/2006/07/3 | /dalitz-plots/
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http://superweak.wordpress.com/2006/07/31/dalitz-plots/
http://superweak.wordpress.com/2006/07/31/dalitz-plots/

[

m(n°n®) / GeV?

)

%0 1 > 3
m’(n°n®) / GeV?
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pp—>37°

2 f2(1565)
*
% <« [ (1500)
y standard (known) mes
| % ->(1270) </ (known) mesons
\
A
fo(980)
|
¢ ; > 3

m’(n°n®) / GeV?
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pp—>37°

>

S 3 .

~ 565)

% —— these are new

I

E
2 _— standard (known) mesons
|
. | 2 3

m’(n°n®) / GeV?
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2
23
~
% —— these are new
<
E
2 _— standard (known) mesons
I
— interferences
. | 2 3

m’(n°n®) / GeV?
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P
B3
~
% —— these are new
&
€
2 _— standard (known) mesons
— angular distribution ~ J°¢
|
— interferences
%0 1 2 3

m’(n°n®) / GeV?
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Dalitz plot formalism

3-body decay of a spin 0 particle into pseudoscalars

1 2

kinematic factors  dynamics

2 . .
|IM|” constant = uniform population

non-uniform population = dynamics helicity states

e
R — rc,r — ab M (J, Ly, mgy, mype) = Z (ablry) T-(mgp) (cra|Ry)
A

/:'Z(J’ L1, p, @B§(|m)32(|ﬂ)Tr(mab) - dynamical function
angular distribution / T T T descr resonance

momenta in r rest frame barrier factors = Breit-Wigner or
K-matrix or ...
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3
m(mwn ) / GeV*

m*(n’n) / GeV*
)

0.5

pp — wnm

0.5

TS
m*(n°n) / CeV*
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m*(r’n) / Ge\f

0.5

@ Sponder

1 2 3
m’(r’n) / GeV*

pp — 'K K|,

vvvvvv

T q,(1520)
] 1 = Q‘H\ f:“2710)

B 1 y ) Z
mi(Kn®) / GeV?
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Review of Particle Physics 2000

ud, ud, dd ui, dd, ss Su, sd
N2+, | JPe =1 1=0 =172
118, o+ T nn' K
135, 1— P o, § K*(892)
11p, 1+ b,(1235) h,(1170), h,(1380) K’
1 3P, 0** a,(1450)* | £,(1370)*, f,(1710)* | K,*(1430)
13P, 1** a,(1260) f,(1285), f,(1420) K,,\f
13p, 2+ a,(1320) | f£,(1270), £,'(1525) | K,*(1430)
1D, 27t T,(1670) | mM,(1645),1,(1870) | K,(1770)
13D, 1— p(1700) ®(1650) K*(1680)*
13D, 27 K,(1820)
13D, 3 P3(1690) | @4(1670), ;(1850) | K;*(1780)
13F, 4++ a,(2040) £,(2050), £,(2220) | K *(2045)
218, 0+ T(1300) 1n(1295), 1(1440) K(1460)
238, 1— p(1450) ®(1420), 3(1680) | K*(1410)*
2P, PAM f,(1810), £,(2010) | K,*(1980)
315, 0~* T(1800) n(1760) K(1830)

[ ] contributions from LEAR experiments

Lectures on Antimatter

significant contributions, but:
* mass range limited

* states are broad

* no good theory predictions

* need input from other
production mechanisms
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“cleaner” systems

Positronium
Dissociation

7F  Energy

oF 3
< 1 1
S 2°S,
S 4
)
[
w
o 3F 238,
=
s
c 2f

1 —

n=1 1351
0 I
N
L = O L = 1
Singlet Triplet Singlet Triplet
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“cleaner” systems

Positronium
Dissociation
7F  Energy
T 23S,
n=2

5
< 218
E _0
)
[
w
o 3F 238,
=
©
c 2f

1 —

n=1 133,
0 I
N
L=0

Singlet Triplet
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1 23P,
2 P]
2%P,
L=1
Singlet Triplet

Relative Energy (MeV)

Charmonium
1000 =
91010) T — L D*D* threshold
0
DD* threshold
700 =
600 |- DD threshold
?
28, ¥ .
500 rFa = I21Sl 1 2 P X
0 Ne¢ 1 2 A2
2 P, hc
400 L EEEEEESN ?
2°P) %y
300 =
23P0 X0
200 =
100 =
1°S
of L
1
~100 k= 1 S0 L
L = O L =
Singlet Triplet Singlet Triplet
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Relative Energy (eV)

“cleaner” systems

Positronium
Dissociation
- Energy
B 238,
= 1
n=2 1 21p
2'S,
- 238,
= 3
n=1 1 Sl

N

1000

900.

2°P, 8001

2P, 700

3
2°Py 600

500
400

300

Relative Energy (MeV)

200

100

-100

L:() L:l

Singlet Triplet Singlet

Triplet

Charmonium
I — D*D* threshold
-oooo-oco-oco--co-ocooo-ooooo_DoDo*ot-horésoh:)lod
I DD threshold
2381 ' .
e = -ZIS.O n! 1 2 P2 Xz
C -2- -Pl -llcl ?
2Py
i 23P0 X0
1°S; vy
1
- 1 S0 Inc
L = O L =
Singlet Triplet Singlet Triplet

charmonium is the positronium of QCD
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Charmonium Spectrum

Crystal Ball ( e*e collisions )

15000

10000

COUNTS /(2.5 % Bin)

5000

Ey (MCV)
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Charmonium Spectrum

“atomic” spectroscopy of cC system

Crystal Ball ( e*e collisions )

T T T

t's .-
500 B ° '7‘-1

15000 —

Clc_j -
& 10000 ]
5 i
z -
>
8 -
5000
0 \ Lot 1oy g d L1 3t
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Ey (Mev)
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Charmonium Spectrum

“atomic” spectroscopy of cC system

clean data but... picture is incomplete

Crystal Ball ( e*e collisions )

T T T

1'Sy-
500 - ° "‘-—1

15000
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z -
>
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5000 —_
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Production:

Crystal Ball
e'e” = 3 .
Lyx,, .
Loy y TAp | "
|_>,Y v eta- L soafos sanfons
]
\ B \ 8
€« O \
= 5 € Pulae ™ 3
' E 760 (Fermilab)
Formation: @ \\
=2 a) L2 X2 b)
pp - XI,Z g X
Ly Iy »
I_> Y e+e— L 0.2
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... in spite of many years of efforts, no clean
understanding of low energy QCD. It is still a field
with many open questions...

HEP however has mostly moved on ...
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... in spite of many years of efforts, no clean
understanding of low energy QCD. It is still a field
with many open questions...

HEP however has mostly moved on ...

The end

(Actually, not really. Rather, the beginning:
tomorrow, we go back to the Big Bang)
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