Beyond the Standard Model

G.F. Giudice

Lecture 2

CERN Summer Student Programme 2012

What do we learn from m_H = 125-126 GeV?

Do we live on the verge of a cosmic catastophe? When the universe was 10⁻¹⁰ second old, it underwent a phase transition.

Is a new phase transition going to happen?

$$V = \frac{\lambda}{4} \left(\left| h \right|^2 - v^2 \right)^2$$

Extrapolate the SM up to very high energies

↑Higgs mass

↓Top quark mass

- Quantum tunneling
- Thermal tunneling

Higgs mass M_h in GeV

What do we learn from measuring the Higgs couplings?

 $m_h = 125.5 \text{ GeV}$

• GR & YM are elegant structures dictated by symmetry, have few free parameters, and fare marvelously with exp. data

• The Higgs sector looks like a provisional structure

→ the LHC may find surprises

Sensitivity to quantum fluctuations

$$\frac{h}{t} \qquad M_Z \propto \frac{\Lambda}{4\pi}$$

No separation of scales: why $M_Z << M_{Pl}$ $(G_N << G_F)$?

Having $M_Z << M_{Pl}$ requires tuning up to 34th digit !

Poising a pencil as long as the solar system on a tip 0.1 mm wide! The "stability" of the hierarchy M_Z / M_{Pl} requires an explanation

Higgs is "screened" at energies larger than TeV \Rightarrow new forces and new particles within LHC energy range

These speculations created remarkable conceptual discoveries

Some of the new ideas about naturalness and EW breaking revolutionize our concepts of space-time, matter and forces

Supersymmetry emerges from the search for new space-time symmetries

The new coordinates have a quantum character and cannot be described by ordinary numbers

This new space has unfamiliar geometric properties (but it is mathematically consistent)

What is the physical meaning of superspace?

Fields: $\psi(x) \rightarrow$ particles

Taylor expansion of superfields:

$$\varphi(x,\theta) = \sum_{n} \varphi_{n}(x) \theta^{n} = \varphi_{0}(x) + \varphi_{1}(x) \theta$$

13

What happens to particles propagating in superspace? Superparticle!

