
CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 

 

Katarzyna Dziedziniewicz-Wojcik 

IT-DB 

 
DB Design based on slides by Dawid Wojcik 

 

Database and Application 

Design 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
 Database design tutorial - 2 

Outline 

• Database design 

• Tips & tricks 

– Indexes and Index Organized Tables 

– Views, Materialized Views 

– Partitioning 

– PL/SQL  

• Writing robust applications 

• Q&A 

 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 

Database design 

 

“It’s a Database, not a Data Dump” 

 

• Database is an integrated collection of 

logically related data 

• You need a database to: 

– Store data… 

– … and be able to efficiently process it in order to 

retrieve/produce information! 

 Database design tutorial - 3 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 

Database design - goals 

• Database design – define how to store data to: 

 avoid unnecessary redundancy 

 Storage is not unlimited. 

 Redundant data is not logically related 

 retrieve information easily and efficiently 

 Easily – does not necessarily mean with a simple 

query. 

 Efficiently – using built-in database features. 

 be scalable for data and interfaces 

 Performance is in the design! 

 Will your design scale to predicted workload 

(thousands of connections)? 

 

 Database design tutorial - 4 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 

Conceptual design 

• Conceptual design 

 Process of constructing a model of the 

information used in an enterprise. 

 Is a conceptual representation of the data 

structures. 

 Is independent of all physical considerations. 

 

 

• Input: database requirements 

• Output: conceptual model 

 

 Database design tutorial  5 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 

Conceptual design – practice 

• The Entity-Relationship model (ER) is most 

common conceptual model for database 

design: 

 Describes the data in a system and how data is 

related. 

 Describes data as entities, attributes, and 

relationships. 

 Can be easily translated into many database 

implementations. 

 

 Database design tutorial - 6 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 7 

Modeling relationships - example 

• Many – to – many (M:N) 

– A student can be registered on any number of courses 

(including zero) 

– A course can be taken by any number of students 

(including zero) 

 

 

• Logical model – normalized form: 

Student 
 

# student_id 

* last_name 

* first name 

o date_of_birth 

Course 
 

# course_id 

* course_name 

* start_date 

* end_date 

Course_enrollment 
 

# student_id 

# course_id 

* enrollment_date 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 8 

Normalization 

• Objective – validate and improve a logical design, 

satisfying constraints and avoiding duplication of 

data. 

• Normalization is a process of decomposing 

relations with anomalies to produce smaller well-

structured tables: 

– First Normal Form (1NF) 

– Second Normal Form (2NF) 

– Third Normal Form (3NF) 

– Other: Boyce/Codd Normal Form (BCNF), 4NF ... 

• Usually the 3NF is appropriate for real-world 

applications. 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
WLCG Service Reliability Workshop, CERN, November 2007 - 9 

First Normal Form (1NF) 

• All table attributes values must be atomic 

(multi-values not allowed) 

– Eliminate duplicative columns from the same 

table. 

– Create separate tables for each group of related 

data and identify each row with a unique column 

(the primary key). 

Manager Subordinates

Helen Smith John Doe, Marc BrownX 
Manager Subordinate1 Subordinate2

Helen Smith John Doe Marc BrownX 
Manager ID Subordinate ID

763 6

763 3

Employee ID Name Surname
3 Marc Brown

6 John Doe

763 Helen Smith



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 10 

Second Normal Form (2NF) 

Violation of the 2NF! 

Student(SID, CID, SNAME, CNAME, GRADE) 

• 1NF 

• No attribute is dependent on only part of the 

primary key, they must be dependent on the entire 

primary key. 

• Example: 

– partial dependency – an attribute is dependent on part of 

the primary key, but not all of the primary key 

Distributed Systems 

Software Engineering 

Database Management 

OO Programming 

Software Engineering 

Database Management 

CNAME 

B 

A 

B 

B 

B 

A 

GRADE 

M120 Smith 421 

M120 Waters 224 

M122 Waters 224 

M125 Smith 421 

M122 Smith 421 

M126 Waters 224 

CID SNAME SID 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 11 

Normalization to 2NF 

• For each attribute in the primary key that is 
involved in partial dependency – create a 
new table. 

• All attributes that are partially dependent on 

that attribute should be moved to the new 

table. 

Student(SID, CID, SNAME, CNAME, GRADE) 

Student(SID, SNAME)  Class(CID, CNAME) 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 12 

Third Normal Form (3NF) 

• 2NF 

• No transitive dependency for non-key 

attributes 

– Any non-key attribute cannot be dependent on 

another non-key attribute 

Class(CID, CNAME, CLEVEL, ROOM, CAPACITY) 

Violation of the 3NF! 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 13 

Normalization to 3NF 

Class(CID, CNAME, CLEVEL, ROOM, CAPACITY) 

  Class(CID, CNAME, CLEVEL, ROOMID) 

  Room(ROOMID, CAPACITY) 

• For each non-key attribute that is transitive 

dependent on a non-key attribute, create a 

table. 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 14 

Integrity constraints - PK 

• Primary keys (PK) 

– Role: Enforce entity integrity. 

– Attribute or set of attributes that uniquely 

identifies an entity instance. 

– Every entity in the data model must have a 

primary key that: 

• is a non-null value 

• is unique  

• it does not change or become null during the table life 

time (time invariant)  



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 15 

Integrity constraints - FK 

• Foreign keys (FK) 

– Role: maintains consistency between two tables with a 

relation. 

– The foreign key must have a value that matches a primary 

key in the other table or be null. 

– An attribute in a table that serves as primary key of 

another table. 

– Use foreign keys! 

• foreign keys with indexes on them improve performance of 

selects, but also inserts, updates and deletes. 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 

Integrity Checks 

• Use DB enforced integrity checks 

– Blindingly fast 

– Proof to compromising 

– Increases system self-documentation  

• NOT NULL 

• Client side integrity checks 

– Not a substitute for server side checks 

– Better user experience 

– Reduces resource usage on server 

 

 
Database design tutorial - 16 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 17 

Schema design – best practices 

• Column types and sizing columns 

– VARCHAR2(4000) is not the universal column 

type 

• high memory usage on the client 

• it makes data dump, not database 

• use proper data types, it: 

– Increases integrity 

– Increases performance 

– Might decrease storage needs 

– Put “nullable” columns at the end of the table 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 18 

Schema design – best practices 

• Estimate future workload 

– read intensive? 

– write intensive? 

– transaction intensive? 

– mixture? – estimate the amount of each type 

• Design indexes knowing the workload 

– what will users query for? 

• Minimize number of indexes using proper column order in the 
indexes. 

• Create views, stored procedures (PL/SQL) to retrieve the 

data in the most efficient way – easier to tune in a running 

system. 

– what is the update/insert/delete pattern? 

• Create indexes on foreign keys. 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 

Indexes 

• Less known but worth mentioning: 

– Reversed index  

• Should be used when PK is populated by an increasing 

sequence 

– Decreases contention on index (especially important in 

RAC environment) 

– Cannot be used for range scans 

– Function based index/virtual column index 

• Built on function or complex calculation  

– For example on UPPER(NAME)  

» Speeds up case insensitive searches 

 

 

 

 Database design tutorial - 19 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 

IOTs 

• Suppose we have an application retrieving 

documents uploaded by given users. List’s 

content and size are dynamic. 

– In traditional table rows will be scattered, read 

index then data block 

–  If the table was created as IOT: 

• create table myIOT (…) organization index; 

• Reads index blocks only 

– Also useful in: 

• Association tables in many2many relationships 

• Logging applications (parameter_id and timestamp as 

PK)  

 Database design tutorial - 20 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 

Views  

• Use views to simplify queries 

• Don’t build up multiple view layers 

– Oracle optimizer might come up with suboptimal 

execution plan 

 Database design tutorial - 21 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 

Materialized views 

• Materialized views are a way to 

– Snapshot precomputed and aggregated data 

– Improve performance 

• Real-life example 

– Web page presenting a report 

– Multiple users accessing web page 

– Hundreds of request from the web server per 

second 

… try a materialized view to store that report 

•  RESULT_CACHE hint 

– Invalidated after DML on underlying objects 

 

 
 Database design tutorial - 22 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 23 

Partitioning – tips & tricks 

• Investigate partitioning your application 

– You can try partitioning by time, subdetector, 

subsytem, etc. 

• Interval partitioning now available in Oracle  

– Benefits: 

• increased availability – in case of loosing one 

tablespace/partition, 

• easier administration – moving smaller objects if 

necessary, easier deletion of history, easier online 

operations on data 

• increased performance – use of local and global 

indexes, less contention in RAC environment. 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 24 

PL/SQL – tips & tricks 

• Query parse types 

– Hard parse 

• Optimizing execution plan of a query. 

• High CPU consumption. 

– Soft parse 

• Reusing previous execution plan. 

• Low CPU consumption, faster execution. 

• Reduce the number of hard parses 

– Put top executed queries in PL/SQL 

packages/procedures/functions. 

– Put most common queries in views. 

– It also makes easier to tune bad queries in case of 

problems. 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 25 

PL/SQL – tips & tricks 

• Reduce the number of hard parses 

– Use bind variables 

• Instead of: 

select ... from users where user_id=12345 

• Use: 

select ... from users where user_id=:uid 

• Using bind variables protects from sql injection 

– More on SQL injection in Szymon’s talk 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 26 

PL/SQL – tips & tricks 

• Beware of bind variables peeking 

– Optimizer peeks at bind variable values before doing hard 

parse of a query, but only for the first time. 

– Suppose we have huge table with jobs, most of them 

already processed (processed_flag = 'Y'): 

• using bind variable on processed_flag may change query 

behavior, depending on which query is processed first after 

DB startup (with bind variable set to 'Y' or 'N') 

– On a low cardinality column which distribution can 

significantly vary in time – do not use bind variable only if 

doing so will result in just a few different queries, otherwise 

use bind variables. 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 27 

PL/SQL – tips & tricks 

• Reduce the number of hard parses 

– Prepare once, execute many 

• Use prepared statements 

• Dynamic SQL executed thousands of times – consider 

dbms_sql package instead of execute immediate 

• Use bulk inserts whenever possible 

• Use fully qualified names 

• Instead of: 

select ... from table1 ... 

• Use: 

select ... from schema_name.table1 ... 

– Known bugs – execution in a wrong schema 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 28 

Writing robust applications 

• Use different level of account privileges 

– Application owner (full DDL and DML) 

– Writer account (grant read/write rights to specific 
objects) 

– Reader account (grant read rights) 

– Directly grant object rights or use roles 

• Caution – roles are switched off in PL/SQL code, one 

must set them explicitly. 

– More on security in Daniel’s talk 

 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 29 

Writing robust applications 

• Use connection pooling 

– Connect once and keep a specific number of 
connections to be used by several client threads 
(pconnect in OCI) 

– Test if the connection is still open before using it, 
otherwise try reconnecting 

– Log connection errors, it may help DBAs to 
resolve any potential connection issues 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 

Writing robust applications 

• Error logging and retrying 

– Trap errors 

– Check transactions for errors, try to repeat failed 

transactions, log any errors (including SQL that 

failed and application status – it might help to 

resolve the issue) 

• Instrumentalization 

– Have ability to generate trace at will 

– More information in Chris’es talk 

 

 

Database design tutorial - 30 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 31 

Writing robust applications 

• Design, test, design, test ... 

• Try to prepare a testbed system – workload 

generators, etc. 

• Do not test changes on a live production 

system. 

• IT-DB provides test and integration system 

(preproduction) with the same Oracle setup 

as on production clusters 

– contact Oracle.Support to obtain accounts and 

ask for imports/exports. 



CERN IT Department 
CH-1211 Geneva 23 

Switzerland 

www.cern.ch/it 
Database design tutorial - 32 

Q & A 


