
CERN IT Department
CH-1211 Genève 23

Switzerland

www.cern.ch/it

ES

Developing C++ applications

using Oracle OCI

Lessons learnt from CORAL

Andrea Valassi

Raffaello Trentadue

(IT-ES)

CERN Oracle tutorial, 8th June 2012

CERN IT Department
CH-1211 Genève 23

Switzerland

www.cern.ch/it A. Valassi, R. Trentadue – 2 Oracle tutorials (OCI) – 8th June 2012

Agenda

• What is CORAL?

• Why OCI (instead of OCCI) from C++?

• A walk-through the OCI features used in CORAL

– Will only cover (some of!) the OCI features used in CORAL

• Focus on ‘tricky’ issues rather than present a proper tutorial – sorry 

– Will also point out a few Oracle client bugs affecting CORAL

• Disclaimer: the present CORAL team does not include the

original authors of the OracleAccess plugins

– We learnt a lot by ‘reverse engineering’ it during its maintenance…

– Some strengths and weaknesses of the original implementation

have only become apparent with several years of production use

CERN IT Department
CH-1211 Genève 23

Switzerland

www.cern.ch/it Oracle tutorials (OCI) – 8th June 2012 A. Valassi, R. Trentadue – 3

What is CORAL?

• The Common Relational Abstraction Layer (CORAL) is a C++

framework to access data in relational databases

– It is used by three LHC experiments (ATLAS, CMS and LHCb) to store and

retrieve conditions data and other types of relational data

– With COOL and CORAL it is part of the Persistency Framework common

project (joint development of IT and LHC experiments)

• Its C++ API is a set of SQL-free abstract interfaces that isolate the

user code from the implementation technology

– CORAL supports several back-ends (Oracle, MySQL, SQLite…)

• Users write the same code for all back-ends

• A detailed knowledge of the many SQL flavors is not required

• The SQL commands specific to each backend are executed by the relevant

library, loaded at run-time by a C++ plugin infrastructure

• Oracle is accessed in CORAL via the OracleAccess library

– The CORAL OracleAccess library is implemented using OCI

Oracle tutorials (OCI) – 8th June 2012 A. Valassi, R. Trentadue – 4

CORAL components

DB lookup XML

COOL

C++ API

C++ code of LHC experiments
(independent of DB choice)

POOL

C++ API
use CORAL

directly

OracleAccess
(CORAL Plugin)

OCI C API

CORAL C++ API (technology-independent)

Oracle

DB

SQLiteAccess
(CORAL Plugin)

SQLite C API

MySQLAccess
(CORAL Plugin)

MySQL C API

MySQL

DB

SQLite

DB (file)

OCI

OCI

FrontierAccess
(CORAL Plugin)

Frontier API

CoralAccess
(CORAL Plugin)

coral protocol

Frontier

Server
(web server)

CORAL

server

JDBC

http coral

Squid
(web cache)

CORAL

proxy
(cache)

coral

coral

http

http

XMLLookupSvc

XMLAuthSvc

LFCReplicaSvc

(CORAL Plugins)

Authentication XML

(file)

LFC server
(DB lookup and

authentication) No longer used

Drop in

2012

?

CORAL is used by ATLAS, CMS and LHCb

in most of the client applications that

access physics data stored in Oracle

CORAL is now the most active of

the three Persistency packages:

• closer to lower-level services

• used by COOL and POOL

ES

CERN IT Department
CH-1211 Genève 23

Switzerland

www.cern.ch/it A. Valassi, R. Trentadue – 5 Oracle tutorials (OCI) – 8th June 2012

Why OCI? (the problem with OCCI)

• Why should we develop C++ applications using OCI?

• An Oracle C++ library does exist: OCCI

– Used extensively for COMPASS and HARP Objectivity migration

– OCCI does have a very nice API (much nicer in C++ than OCI…)

• OCCI is a C++ library built only for some C++ compilers

– Problem in the past: OCCI for gcc2.96, we needed 2.95.2 or 3.2.3

– Now better (several compilers), but still limited to gcc4.3 and ???…

• It would be different if Oracle released OCCI sources… it does not 

• OCI is a C library – it can be used with any C++ compiler

– OCI is the basic client library, used internally by all Oracle tools

• e.g. also one of the java drivers for Oracle is based on OCI

– CORAL OracleAccess, based on OCI, is used and must be built on Linux

for gcc4.3, gcc4.6, gcc4.7, icc11, clang3.0…

CERN IT Department
CH-1211 Genève 23

Switzerland

www.cern.ch/it A. Valassi, R. Trentadue – 6 Oracle tutorials (OCI) – 8th June 2012

OCI workflow in CORAL

• Environment bootstrap: OCIEnvCreate
– Several options (e.g. to configure multi-threaded clients, as in CORAL)

– Runtime libraries (libociei or libocicus) are loaded here (see strace)

• Setup – allocate handles (all along): OCIHandleAlloc
– Set relations between handles: OCIAttrSet

• Connect to the DB server: OCIServerAttach (CORAL Connection)
– One such physical connection can be used for many user sessions

• Authenticate user session: OCISessionBegin (CORAL Session)
– Via username/password in CORAL

• X509 proxy certificates would need a middle tier (e.g. CORAL server)

• Start the transaction: OCITransStart
– This is only needed for updates, not for read-only use cases…

• Prepare the SQL statement: OCIStmtPrepare2
__

• Execute the SQL statement: OCIStmtExecute
– SQL (SELECT, DDL, DML), PL/SQL (as CALL xxx), control (ALTER SESSION…)

– Iterate on cursor: OCIStmtFetch2
__

• Release the SQL statement: OCIStmtRelease

• Commit the transaction: OCITransCommit

• Close the session: OCISessionEnd

• Disconnect the server: OCIServerDetach

• Cleanup – release handles (all along): OCIHandleFree
– Unset relations between handles: OCIAttrSet

Oracle tutorials (OCI) – 8th June 2012 A. Valassi, R. Trentadue – 7

OCIHandleAlloc OCIHandleAlloc

OCIHandleAlloc

OCIAttrSet

OCIAttrSet

OCIAttrSet

OCIHandleAlloc

OCI connections/sessions in CORAL

0 Initialize OCI (e.g. load Oracle client libraries)

 - Create OCIEnv (via OCIEnvCreate)

 - Create OCIError (via OCIHandleAlloc)

1 Set up physical connection to DB server
 - Create OCIServer (via OCIHandleAlloc)

 - Establish connection (via OCIServerAttach)

2 Set up logical user session on DB server
 - Create OCISvcCtx (via OCIHandleAlloc)

 - Link server connection to it (via OCIAttrSet)

 - Create OCISession (via OCIHandleAlloc)

 - Link it to service context (via OCIAttrSet)

 - Set session’s user and password (via 2 x OCIAttrSet)

 - Begin user session (via OCISessionBegin)
 - Create OCITrans (via OCIHandleAlloc)

 - Link it to service context (via OCIAttrSet)

 - Start transaction (via OCITransStart)

OCITrans
“transaction handle” or

“transaction context handle”
One OCITrans per CORAL Session

Connection sharing?

- One OCIServer

 (One CORAL Connection)

- Many sets of (OCISvcCtx,

OCISession, OCITrans)

using the same OCIServer

 (Many CORAL Sessions)

OCISvcCtx
“service context handle”

One OCISvcCtx per CORAL Session

OCIServer
“server handle” or

“server context handle”
One OCIServer per CORAL Connection

OCISession
“session handle” or

“session context handle”
One OCISession per CORAL Session

ES

CERN IT Department
CH-1211 Genève 23

Switzerland

www.cern.ch/it A. Valassi, R. Trentadue – 8 Oracle tutorials (OCI) – 8th June 2012

Transactions – comments

• CORAL presently calls OCITrans also for read-only use cases

– This is equivalent to ‘SET TRANSACTION READ ONLY’

– These are serializable read-only transactions

• A SELECT statement issued at time t1 will always return a result set describing

the state of the database at the time t0 (< t1) when the transaction started

– Advantages: all data can be cached (e.g. used in COOL)

– Disadvantages: several

• Heavy operation on the redo logs (has been seen to lead to ORA-01555)

• Querying newly created tables in COOL tests leads to OCI-01466 (Oracle bug)

• Sometimes you do want to read newly added data (e.g. ATLAS HLT)

• Summary: calling OCITrans is NOT needed in read-only use cases

– Not clear to me if originally this was intentional or unintentional in CORAL

– We plan to properly support three use cases in CORAL eventually:

• RW transactions, serializable RO transactions, “non-serializable RO” transactions

• You may simply skip OCITrans and execute your SQL directly (e.g. ATLAS HLT)

• See https://twiki.cern.ch/twiki/bin/view/Persistency/CoralReadOnlyModes

https://twiki.cern.ch/twiki/bin/view/Persistency/CoralReadOnlyModes

CERN IT Department
CH-1211 Genève 23

Switzerland

www.cern.ch/it A. Valassi, R. Trentadue – 9 Oracle tutorials (OCI) – 8th June 2012

Data handling – comments

• Bind variables (recommended in CORAL to reduce server load!)

– OCIBindByPos, OCIBindByName, OCIBindArrayOfStruct, OCIBindDynamic

• Data types
– Simple data types (C++ numbers/strings)

• Described in OCI calls by SQLT_INT, SQLT_FLT, SQLT_STR…

– Oracle special data types (e.g. DATE)

– BLOBs and CLOBs (for C++ strings longer than 4000 characters)

• OCILobOpen, OCILobClose, OCILobRead, OCILobWriteAppend…

– No C++ “object” types in CORAL
• More generally, no user defined types and no OTT (Object Type Translator)

• Mapping C++ and SQL/OCI data types?
– Custom implementation in CORAL (based on C++ types, e.g. “long”)

• And a slightly different one in COOL (based on storage precision, e.g. int32, int64)

– Personally I am somewhat suspicious of wildly generic auto-translations
• The C++ program flow and SQL query optimization are two separate areas that

both need a lot of care

• Developing C++ code ‘letting another layer take care of all SQL translations’

brings the risk of poor schema design and poor query performance

• You are the developer, you are in charge of SQL query performance!

CERN IT Department
CH-1211 Genève 23

Switzerland

www.cern.ch/it A. Valassi, R. Trentadue – 10 Oracle tutorials (OCI) – 8th June 2012

Cleanup phase – comments

• Release OCI handles and break relations in the right order

– reverse order to that used for allocating and associating handles

• Crashes observed in an older CORAL implementation

– if a connection is broken and the corresponding handle is released

before an associated (e.g. statement) handle is used/released

– patched by fixes/workarounds in CORAL since then

– strictly speaking some of these are Oracle client bugs

• the crash (segmentation fault) is deep inside the Oracle client

• the Oracle client should do its internal bookkeeping to be able to tell if

a first OCI handle has gone out of scope when a second OCI handle

tries to access it inside the implementation of an Oracle method…

• I would expect an ORA-24xxx or ORA-031xx error rather than a crash

CERN IT Department
CH-1211 Genève 23

Switzerland

www.cern.ch/it A. Valassi, R. Trentadue – 11 Oracle tutorials (OCI) – 8th June 2012

The OCI client library – comments

• The OCI library is definitely more ‘portable’ than the OCCI library
– e.g. no need to respect a specific libstdc++ dependency

• But also the OCI library (libclntsh.so) does have some limitations
– if you run your client software on non-standard O/S (e.g. SLC)

– if client applications have multiple dependencies (e.g. LHC experiments)

– different issues from those seen when installing the server software on very

controlled environments (e.g. strict RedHat Enterprise Linux)

• Example 1 (Oracle bug – fixed): SELinux
– out-of-the-box, the 11.2.0.1.0 library could not be loaded due to SELinux

– patched version (for OCI and OCCI too) is installed for the LHC experiments
• see /afs/cern.ch/sw/lcg/external/oracle/11.2.0.1.0p3/doc/README_11.2.0.1.0p3.txt

• Examples 2/3 (Oracle bugs – not yet fixed): GSSAPI and Kerberos
– the OCI library redefines its own custom versions of some security libraries

(GSSAPI and Kerberos), conflicting with the version provided by the O/S

– user applications that need Oracle AND another security-aware component

(e.g. xrootd) may fail one or the other depending on the loading order…

– we were lucky so far and we could find workarounds… for how long?
• a strategy to fix exists: using ‘versioned symbols’ (recently used by EMI

middleware to fix a similar bug in Globus due to GSSAPI)

CERN IT Department
CH-1211 Genève 23

Switzerland

www.cern.ch/it A. Valassi, R. Trentadue – 12 Oracle tutorials (OCI) – 8th June 2012

11g advanced topics – not yet used

• OCI callbacks for Transparent Application Failover (TAF)

– CORAL has its own custom implementation to react to “network glitches”

• Oracle TAF is mainly about instance crashes – failover to another instance

• CORAL implementation is mainly about temporary network/database glitches

• OCI client result cache

– Would be an interesting area to test

– CORAL caches data via Frontier/Squid and CoralServer/Proxy middle tiers

CERN IT Department
CH-1211 Genève 23

Switzerland

www.cern.ch/it A. Valassi, R. Trentadue – 13 Oracle tutorials (OCI) – 8th June 2012

Python access: PyCoral and PyCool

• PyCool – Python bindings for COOL

– Implemented automatically via ROOT (Reflex, PyCintex, PyRoot)

• ROOT will internally move this from CINT to llvm by the end of 2012

– Easy to maintain, ~nothing to do when a class is added/modified

• PyCoral – Python bindings for CORAL

– Implemented manually (class by class) via low-level C calls

– Very painful to maintain, may merge with PyCool eventually

• Both PyCoral and PyCool allow Oracle access from Python

– Ultimately via the OCI implementation in the OracleAccess C++

CERN IT Department
CH-1211 Genève 23

Switzerland

www.cern.ch/it A. Valassi, R. Trentadue – 14 Oracle tutorials (OCI) – 8th June 2012

Conclusions

• To access Oracle from C++:

– you could use OCCI (but this may limit your set of compilers)

– or you can use OCI

– or you can also use CORAL directly 

• References

– Oracle Call Interface (OCI) 11g Programmer’s Guide (html, pdf)

– CORAL twiki, savannah and CVS

• All OCI in CORAL can be found in the OracleAccess library in CVS

• A standalone example of OCI connection sharing is in the COOL CVS

http://oracle-documentation.web.cern.ch/oracle-documentation/11gr2doc/appdev.112/e10646/toc.htm
http://oracle-documentation.web.cern.ch/oracle-documentation/11gr2doc/appdev.112/e10646.pdf
https://twiki.cern.ch/twiki/bin/view/Persistency/Coral
https://savannah.cern.ch/projects/pool/
http://coral.cvs.cern.ch/cgi-bin/coral.cgi/coral/
http://coral.cvs.cern.ch/cgi-bin/coral.cgi/coral/OracleAccess/src/
http://cool.cvs.cern.ch/cgi-bin/cool.cgi/cool/contrib/ExternalTests/OracleConnectionSharing/ocitest/

