

#### The 'Standard Model'



= Cosmic DNA

#### The matter particles



#### The fundamental interactions





# The Standard Model of Particle Physics

These are all we normally "see" but the others are crucial to defining what we are.



#### The Standard Model



Confirmed at sub 1% level

## **Evolution of the Universe**









CERN set up in 1954 to study these particles in detail

## Why do Things Weigh?

#### Newton:

Weight proportional to Mass

#### Einstein:

Energy related to Mass

Neither explained origin of Mass

Where do the masses come from?

Are masses due to Higgs boson? (the physicists' Holy Grail)





#### Supersymmetry: A New Symmetry in Nature





3 isolated leptons

- + 2 b-jets
- + 4 jets
- + E<sup>miss</sup>

Candidate Particles for Dark Matter

⇒ Produce Dark Matter in the lab

SUSY particle production at the LHC





#### Where does the Matter come from?

Dirac predicted the existence of antimatter:
same mass
opposite internal properties:
electric charge, ...
Discovered in cosmic rays
Studied using accelerators



Matter and antimatter not quite equal and opposite: WHY?

2008 Nobel Physics Prize: Kobayashi & Maskawa

Is this why the Universe contains mainly matter, not antimatter?

LHC experiments will look for answer



## **Extra Space Dimensions?**





#### **Signatures**

Eg monojet events monophoton events Z' like resonances KK excitations

The gravity force becomes strong!





## **CERN Accelerator Complex**





## LHC Main Bending Cryodipole



8.5 T nominal field

12 kA nominal field





# The fastest racetrack on the planet...



Trillions of protons will race around the 27km ring in opposite directions over 11,000 times a second, travelling at 99.99999991 per cent the speed of light.



## The emptiest space in the solar system...





To accelerate protons to almost the speed of light requires a vacuum as empty as interplanetary space. There is 10 times more atmosphere on the moon than there will be in the LHC.



## One of the coldest places in the universe...





With an operating temperature of about -271 degrees Celsius, just 1.9 degrees above absolute zero, the LHC is colder than outer space.



### The hottest spots in the galaxy...





When two beams of protons collide, they will generate temperatures 1000 million times hotter than the heart of the sun, but in a minuscule space.



## The Large Hadron Collider

#### Require Accelerator with

- largest possible primary energy (limited by size of LEP tunnel and highest magnetic field practicable
- largest possible luminosity (quarks carrying a large fraction of primary proton energy are rare)



|     | Beams | Energy GeV | Luminosity   |
|-----|-------|------------|--------------|
| LEP | e+ e- | 200        | 1032 cm-25-1 |
| LHC | р р   | 14000      | 1034         |
|     | Pb Pb | 1,312,000  | 1027         |

High repetition rate

40 MHz or 25 ns bunch spacing

## The ATLAS Experiment











## The LHC Enters Popular Culture





#### LHC + Experiments: spectacular start-up on 30 March 2010

→ Brilliant performances of LHC, experiments and GRID computing during 2010 and 2011 data taking periods









#### Cross sections at the LHC





"Well known" processes. Don't need to keep all of them ...

New Physics!!
We want to keep!!

## The Story so Far ...



Run: 154822, Event: 14321500 Date: 2010-05-10 02:07:22 CEST



 $p_T(\mu^-) = 27 \text{ GeV } \eta(\mu^-) = 0.7$  $p_T(\mu^+) = 45 \text{ GeV } \eta(\mu^+) = 2.2$ 

 $M_{\mu\mu} = 87 \text{ GeV}$ 

Z→μμ candidate in 7 TeV collisions





### The Story so far – and to come









... but the Higgs mass is about a

## ATLAS HIGGS SEARCH







Excluded at 95% CL

 $110 < m_H < 122.5 \text{ GeV (except } 117.5\text{-}118.5)$  $129 < m_H < 539 \text{ GeV}$  Expected if no signal 120-555 GeV

Excluded at 99% CL

 $130 < m_H < 486 \text{ GeV}$ 

Combining all (12) channels together, full 2011 dataset





## CMS Higgs Search



#### **Looking for Dark Matter**





Missing energy taken away by dark matter particles

### No Black Holes yet! CMS 4-Jet Event @ 2.36 TeV



