

Tracker Software Update

A. Dobbs

Imperial College London

June 2012

Introduction 0000	Single Station Test	Monte Carlo	Pattern Recognition	Full Track Fit
Overview				

- Current Status
- Workflow
- Single Station Test
- Monte Carlo
- Pattern Recognition
- Full Track Fit

Rectangles - data units, Lozenges - processes

- 4 同 6 4 日 6 4 日 6

э

Introduction ○○○●	Single Station Test	Monte Carlo	Pattern Recognition	Full Track Fit
Current S	tatus			

- MC is much improved but issues remain
- Config DB need to write code to start using this
- Reconstruction up to spacepoints demonstrably working reliably (MC, cosmics, single station test)
- Online Monitoring also working well up to spacepoints
- Pattern Recognition working for straight, to be optimised
- Pattern Recognition for helical has produced helices but code is not yet reliable
- Full Kalman track fit making steady progress
- Unit tests starting to catch up with code again
- Documentation good from an algebra / equipment point of view, code implementation not done
- New team members: Savannah Thais and Natalie Harrison from UChicago, Chris Heidt drafted in from Riverside

Introduction 0000	Single Station Test	Monte Carlo	Pattern Recognition	Full Track Fit
Single S	tation Test			

- Able to perform real time reconstruction of spacepoints
- Duplets are Red, Triplets are Blue
- Red lines are dead channels in the electronics
- See D. Adey talk on single station test and E. Santos talk in Analysis session

Plots by E. Santos.

Introduction 0000	Single Station Test	Monte Carlo	Pattern Recognition	Full Track Fit
Monte Ca	arlo			

- C. Heidt making good progress
- Solved why were not seeing Hits (fibre length parameter was set wrong)
- Can now reconstruct straight tracks direct from the MC
- Analysis also to being performed by new UChicago students
- See talk by C. Heidt

Introduction Single Station Test

Monte Carlo

Pattern Recognition

Image: A mathematical states and a mathem

э

Full Track Fit

Pattern Recogniton: Angle Analysis

Work by Savannah Thais.

- Reducer to visualise tracks and spacepoints online or offline
- Current spill and cumulative output
- Both trackers, displayed separately
- X-Y, Z-X, Z-Y projections

ntroduction Single Station Test Monte Carlo **Pattern Recognition** Full Track Fit 0000 00●000

Pattern Recognition: Residuals All Trial Lines

A. Dobbs Tracker Software Update

Pattern Recognition: Residuals Good Trial Lines

Cuts: $\delta x < 10mm$ AND $\delta y < 10mm$

A. Dobbs Tracker Software Update

Detterm	D'ı		tente e tran	
			000000	
Introduction	Single Station Test	Monte Carlo	Pattern Recognition	Full Track Fit

Pattern Recogniton: Helix Parameterisation

→ < ∃→

э

-∢ ⊒ ▶

Introduction Single Station Test Monte Carlo Pattern Recognition Full Track Fit 0000 00000

Pattern Recognition: Helices

- Work by S. Blot and N. Harrison
- Need to resolve issues with singularities in helix parameterisation
- Code bugs still be solved
- Need further checking against MC
- Unit tests being written
- Plots shown here represent reconstruction based on perfect mathematical helices

Introduction 0000	Single Station Test	Monte Carlo	Pattern Recognition	Full Track Fit
Full Track	Fit			

- Use Kalman filter, picking up spacepoints and suggested track parameters from Pattern Recognition;
- Finds the optimum state at each measuring site including measurement and system errors;
- Measurement sites defined to be each individual channel hit (instead of the reconstructed spacepoints);
- Flexible, can be used in difference scenarios (solenoidal, quadrupole or no field) and integrate different detectors;
- Reconstruction of straight tracks shows that fitted position agrees very well with measurement (better than the simple χ^2 fit);
- The goodness of the momentum reconstruction hasn't been assessed as it requires helical Pattern Recognition;
- Energy Loss to be included in the Kalman fit too.