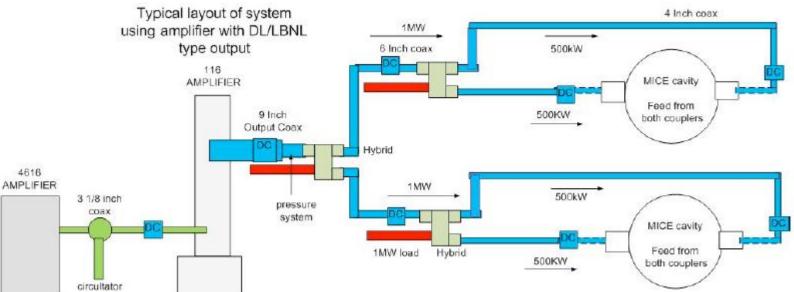


RF Workshop 16-17 April 2012, Daresbury

Aims:

- -- finalize specifications of the MICE RF system
- -- prepare response to RF reviewers
- -- Initiate MICE-wide RF group
 - -- take steps to prepare to deliver the RF system at RAL
 - -- update WBS
 - -- include a RF system test as necessary

Excellent organization (Sue Waller, Alan Grant, Andy Moss, Ken Long)


<u>Agenda</u>	Tuesday, April 17, 2012
Monday, April 16, 2012	
14:00 – 14:10 Aim of Workshop Speaker: Ken Long Slides: 14:10 – 14:30 MICE experimental programme and constraints on the RF system Speaker: Alain Blondel	09:00 – 09:30 DAQ considerations Speaker: Paul Smith Slides:
Slides: 14:30- 15:00 Response Report submitted to Review Panel Speaker: Andy Moss Slides:	09:30 – 10:00 Integration with MICE DAQ Speaker: Yordan Karadhzov Slides:
15:00 – 15:30 RF Power Specification Speaker: Andy Moss Slides:	10:30 – 11:00 LLRF/DAQ Open Discussion Slides:
15:30 - 15:50 Coffee/Tea	11:00 – 11:20 Coffee/Tea
15:50 – 17:30 Specification & RF System Test Discussion Convener: Ken Long Slides:	11:20 – 11:50 Gradient, Cavity Phasing & Phase Control Speaker: Kevin Roland Slides:
Working Dinner	11:50 – 12:20 RF Cavities Speaker: Derun Li
To ensure completion of aims, I propose:	Slides:
Discussion scheduled at 15:50 includes: Specification, response to feedback and shopping list	12:20 - 13:45 Lunch
Revised drafts will be produced by AG/KL before dinner, if possible, to allow final comments by lunch 17Apr12;	13:45 – 14:30 Visit plant room 1 - Amplifier commissioning
KL will revise documents during tour of Plant Room 1 and circulate final revision for final session	14:30 – 14:50 RF Layout Speaker: Alan Grant Slides:
Discussion will lead to completion of the organisational aim and I will prepare a slide or two to document what we've agreed for presentation at the end of 17Apr12	14:50 – 15:10 Coffee/Tea
	15:10 - 16:30 Specification, schedule and procurement discussion Convener: Ken Long Slides:
MICE CM33 – system test? Alain Blondel	

OUTCOME 1 Specification document

-- MICE note 372 --

important decision: cavity phase between the two cavities powered by a given amplifier is fixed (no phase shifters)

This is enough to provide 98% as maximum between 140 and 240 MeV/c operation and saves at least as much power loss in 'trombones'

Table 1: Relative phase of neighbouring cavities for the muon momentum range of interest to MICE.

	Total	Kinetic	Gamma	Beta	Transit	Phase
Momentum	Energy	Energy		(v/c)	Time	Shift
(MeV/c)	(MeV)	(MeV/c^2)			ns	(degrees)
140	175.40	69.74	1.686	0.805	1.814	131.46
160	191.74	86.08	1.842	0.840	1.740	126.05
180	208.72	103.06	2.003	0.866	1.686	122.17
200	226.19	120.54	2.168	0.887	1.647	119.29
220	244.06	138.40	2.338	0.904	1.616	117.11
240	262.23	156.57	2.510	0.917	1.593	115.41

MICE CM33 – sys 4

Phase and amplitude control

Difference was made betwween 'control' and 'measurement'

Phase and amplitude control will be provided for the RF amplifier system at the 0.5 degree and 1% level. It will be possible to operate the system both with and without the control loop.

NB operation with the control loop → loss of power by 15-20%

Previous studies of the reconstruction of the phase and amplitude of the electric field at the time of passage of the muon have yielded the following specification for the diagnostics [1]:

- Phase measurement: ±5 degrees;
- Amplitude measurement: 1%.

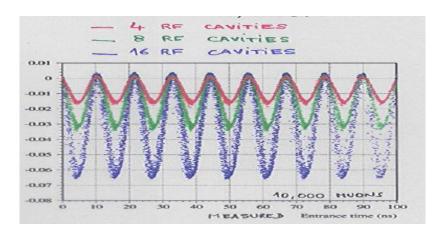
This was discussed by Paul Smith who is taking up the measurement of phase and amplitude wrt passage of muon through apparatus.

MICE RF Power System Requirements

Amplifier system				
Parameter	Value	Unit		
Frequency	201.25	MHz		
Peak Power Level	2	MW		
Repetition Rate	1	Hz		
RF Pulse Length	1	mSec		
Average RF Power Level	2	kW		
Electrical to RF Conversion Efficiency	50	%		
Rise time of RF power ramp		ms		
Power distribution system				
Pressure of N2 gas in coax lines	1.5	Bar		
Maximum power delivered to each coupler	500	kW		

I	I.	1 1		
Phase and amplitude control				
Relative phase of cavity pair powered by single TH116 amplifer	124	Degrees		
Phase control	0.5	Degrees		
Amplitude control	1%			
Open loop operation	Optional			
RF cavity				
Central resonant frequency	201.25	MHz		
Quality Factor, Q₀	44000			
Cavity R/Q	26750	Ohm		
3dB Bandwidth	7.5	kHz		
Tuning Range	±230	kHz		
Nominal Accelerating Gradient	8	MV/m		

Concerning regulation of phase and amplitude:


- 1. phase regulation by pair of cavities is enough and simplifies the system
- 2. what is really needed is ability to know phase and gradient for each muon

there is no unique way of doing this and this should be an outcome of this workshop

With which precision?

- -- Absolute scale of amplitude
- -- Global phase shift (time delay) between RF system and TOF system

will both come from analysis of large samples of muons in operation.

WBS (I)

		onisation Cooling Experim		
CE	Level 2	Level 3	Level 4	
	2.1-Project Management			Nichols
		2.1.1-UK Project management		Grant
		2.1.2-Schedule coordination		Hanson
		2.1.3-Hall schedule		Grant
		2.1.4-Hall Management		Greenall
\dashv	2.2-MICE-Muon-Beamline			Long
		2.2.1-Target		Hodgson
			2.2.1.1-Assembly	Tarrant
			2.2.1.2-Stator	Barber
			2.2.1.3-DAQ&Cntrl	Smith
			2.2.1.4-Software	Hodgson
		2.2.2-Decay-solenoid		Bayliss
		2.2.3-Conventional magnets		Nebrensky
		2.2.4-Diffuser		Blackmore
	2.3-MICE-Hall Engineering and infrastructure			Hayler
		2.3.1-Integration engineering		Tarrant
		2.3.2-Virostek shielding		Hayler
		2.3.3-Services		Nichols
		2.3.4-Radiation shutter		Hayler
		2.3.5-Integration-of-Step-IV		Hayler
		2.3.6-Integration-of-Step-VI		Virostek
	2.4-MICE-Detectors and instrumentation			Bross
		2.4.1-TOF		Bonesini
		2.4.2-cKOV		Cremaldi
		2.4.3-Tracker		Long
			2.4.3.1-Trigger-distribution	MacWaters
		2.4.4-EMR		Asfandiyarov
			2.4.4.1-EMR Mechanics	Cadoux
		2.4.5-KL		Tortora
		2.4.6-Luminosity monitor		Soler

2.5-MICE-Magnet	systems	2.5.1-Focus-coil-module		Preece Bradshaw
		2.5.2-Coupling magnets		Gourlay
		2.5.3-spectrometer solenoids		Virostek
2.6-MICE Liquid hand absorbers	ydrogen delivery system	2.6.1-Control engineering 2.6.2-Cryogenic support 2.6.3-liquid hydrogen absorber 2.6.4-Solid absorbers		Watson Warburton Courthold Ishimoto Snopok
2.7-RF Systems		2.7.1-RF Power source 2.7.2-RF Cavities 2.7.3-RF Power distribution 2.7.4-Low level RF		Kevin Ronald Moss DeMello Grant Peter Corlett
2.8-Computing		2.8.1-Software 2.8.2-Grid 2.8.3-Networking 2.8.4-Computing support		Colling Rogers Nebrensky Macwaters Wilson
2.9-Operations		2.9.1-Online reco. 2.9.2-DAQ/Trigger 2.9.3-Controls & Monitoring 2.9.4-MLCR		Coney Coney Karadzhov Hanlet Macwaters
-			•	+

CONCLUSION

THE MICE RF team has a large and essential work in front of them!

BEST WISHES to Kevin and collaborators

System test

Aim: Good operation and integration of RF system in the MICE hall and in the MICE experiment.

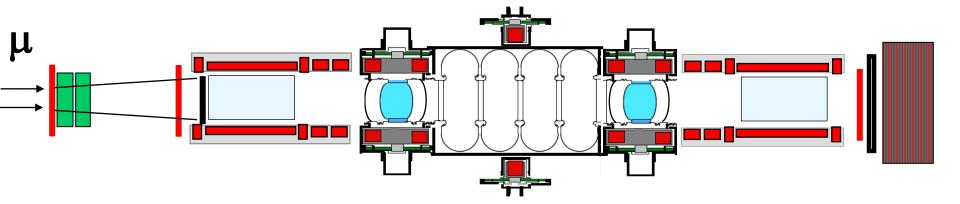
Do it soon enough so that remaining flaws or dont-know-how-to-do issues are identified as early as possible.

Only sensible place to do is MICE hall

After Step Iv is completed

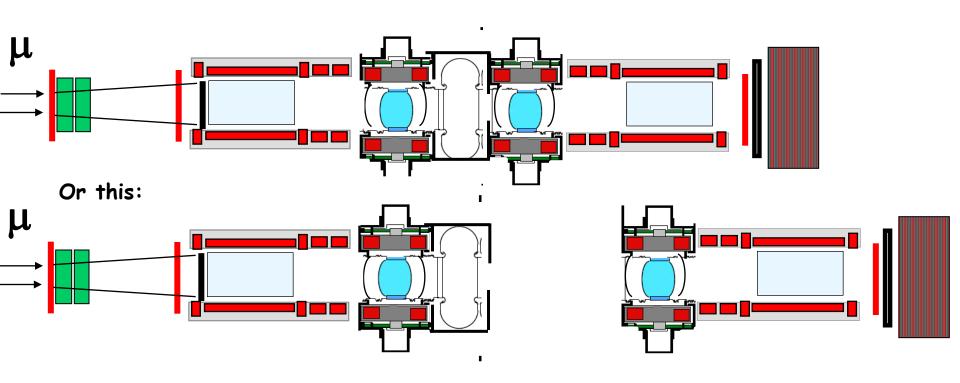
Best is if cavity (ies) are in the final position so that we don't have to modify the planned RF piping for it.

Dont need the magnetic fields for this particular exercize

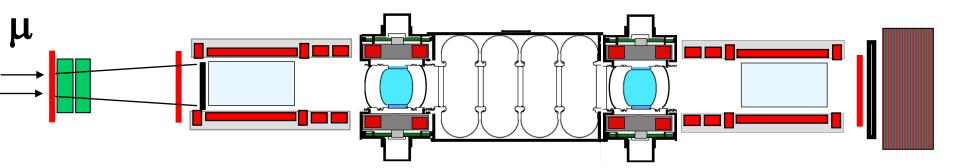

Beam could be useful

Solution 1: single RF vessel

Solution 2 4-cavity RF vessel without CC if this is possible



Step V, nominal



Solution 1 using a copy of the single cavity RF vessel

solution 2: RF system test RFCC module without CC magnet ?

