Top quark pair differential distributions with aMC@NLO: constraints on the gluon and PDFs for NLO event generators

Valerio Bertone

CERN and Albert-Ludwigs-Universität Freiburg

PDF4LHC May 23th 2012, CERN

In collaboration with: S. Frixione, J. Rojo and P. Torrielli

Valerio Bertone

CERN and Albert-Ludwigs-Universität Freiburg

イロト イポト イヨト イヨト

Outline

3 Differential Distributions

4 Impact on PDFs

・ロト・4回ト・ヨト・ヨー うへで

Valerio Bertone

CERN and Albert-Ludwigs-Universität Freiburg

Motivation: why $t\bar{t}$?

Potentially discriminating between different PDF sets:

LHC \sqrt{s} = 7 TeV, Top++, m_t = 173.3 GeV

[Reference: Francesco Spanó: arXiv:1112.3906]

Provide a strong constraining on the Gluon PDF at large values of x:

$$\frac{\sigma_{gg}(t\bar{t})}{\sigma_{tot}(t\bar{t})} \sim 80\%$$
 at LHC 7 TeV

Valerio Bertone

CERN and Albert-Ludwigs-Universität Freiburg

3

Motivation: why $t\bar{t}$?

• $t\bar{t}$ inclusive and differential cross sections measured at LHC:

CMS:

[Reference: CMS PAS TOP-11-013]

- ATLAS in progress,
- Sizable amount of data to use to perform PDF fits.
- Exact fully NNLO calculation soon available:
 - $q\overline{q} \rightarrow t\overline{t} + X$ already present,

[Reference: Bärnreuther, Czakon and Mitov, arXiv:1204.5201]

g $g, gq, qq' \rightarrow t\overline{t} + X$ in preparation.

Valerio Bertone

CERN and Albert-Ludwigs-Universität Freiburg

イロト イポト イヨト イヨト

aMC@NLO in a nutshell

aMC@NLO:

automatic tool that is flexible and allows to compute any process at NLO accuracy, including matching to the parton shower.

How it works:

- MadFKS computes all the NLO contributions, except the finite part of the virtual amplitude.
- MadLoop computes the virtual corrections using CutTools:
 - if the analytical virtual correction is available (like $t\bar{t}$ production itself), possibility to skip MadLoop.
- Combine MadFKS and MadLoop to get any observable at NLO accuracy.
- Add terms to remove double counting when matching to the parton shower á la MC@NLO.
- Shower the generated events using HERWIG or PYTHIA to get fully exclusive predictions at NLO accuracy.

Valerio Bertone

◆□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ Q ○
CERN and Albert-Ludwigs-Universität Freiburg

Why aMC@NLO

- It allows to use identical analysis procedures as the ones applied to data:
 - application of kinematical cuts,
 - jet reconstruction,
 - ...
 - direct comparison with data.
- Consistent computation of correction factors from hadron to parton level:
 - a common framework for all processes.
- Possibility to compute scale variation and PDF uncertainties by means of the reweighting method:
 - no extra cost,
 - available at both NLO and NLO+PS level.

Valerio Bertone

CERN and Albert-Ludwigs-Universität Freiburg

イロト イポト イヨト イヨト 二日

Differential Distributions with aMC@NLO: the setup

- Generation of $t\bar{t}$ events at LHC $\sqrt{s} = 7$ TeV:
 - pure NLO,
 - NLO + PS with HERWIG6,
 - NLO + PS with **PYTHIA6 virtuality ordered**.
- Study of all the relevant differential distributions:
 - top and bottom distributions,
 - lepton distributions.
- Comparison of the results for different PDF sets with respective uncertainties:
 - NNPDF 2.1
 - MSTW2008
 - AMB11
- Assessment of which distributions are more sensitive to the shower effects.

Valerio Bertone

CERN and Albert-Ludwigs-Universität Freiburg

イロト 不得 トイヨト イヨト 二日

Differential Distributions with aMC@NLO: the impact of PDFs

• The LHC $t\bar{t}$ differential distributions could be potentially discriminating for the PDF sets.

Differences between NNPDF/MSTW and ABM of order 20%:

same trend as in the inclusive cross section.

CERN and Albert-Ludwigs-Universität Freiburg

イロト イポト イヨト イヨト

Differential Distributions with aMC@NLO: the effect of the Parton Shower

- Impact of the parton shower on the differential distributions,
 - inclusive cross section unchanged (unitarity of the parton shower),
 - difference in the shape of the differential distributions.
- Comparison of NLO and NLO+PS predictions:

Generally moderate impact of the PS ...

Valerio Bertone

CERN and Albert-Ludwigs-Universität Freiburg

イロト イポト イヨト イヨト

Differential Distributions with aMC@NLO: the effect of the Parton Shower

Some distributions present a **stronger dependence** on the PS:

 \Rightarrow the inclusion of these data in a PDF fit requires NLO+PS accuracy.

- Presently available PDF sets do not include PS effects:
 - conceptual inconsistency when used with NLO MC generators (MC@NLO, POWHEG).
- aMC@NLO could be used to provide a PDF set including PS effects:
 - to be used with NLO MC generators.

Valerio Bertone

CERN and Albert-Ludwigs-Universität Freiburg

A B F A B F

Image: A matrix

How to estimate the impact on PDFs

Question:

Can we estimate the impact of the inclusion of the $t\bar{t}$ differential distributions on PDFs?

Exercise:

- Generate **pseudo data** of $t\bar{t}$ differential cross sections (NLO+PS) using **NNPDF2.1** and **ABM11** central values and use the statistical uncertainty of 5 fb^{-1} of data as error.
- **Reweight** the NNPDF 2.1 NNLO set with those pseudo data:
 - NNPDF2.1: assess the impact on a given PDF set,
 - ABM11: assess how discriminating these distributions are with respect to different PDF sets.

Valerio Bertone

CERN and Albert-Ludwigs-Universität Freiburg

イロト イポト イヨト イヨト

Reweighting of PDFs in a nutshell

It allows to incorporate a new set of data points \mathcal{O}_i (and covariance matrix σ_{ij}), with i = 1, ..., n, in a set of PDFs $\{f_k\}$, with $k = 1, ..., N_{rep}$, without need of refitting.

 Valid for a Monte Carlo representation of PDFs like the NNPDF sets, [References: The NNPDF Collaboration, arXiv:1108.1758 and arXiv:1012.0836]

[References: The NNPDP Collaboration, arXiv:1106.1756 and arXiv:1012.065

recently made available also for MSTW2008.

[Reference: Watt and Thorne, arXiv:1205.4024]

Procedure:

Evaluate the χ^2 of the dataset for each PDF replica:

$$\chi_k^2 = \frac{1}{n} \sum_{i,j}^n (\mathcal{O}_i - \mathcal{O}_i[f_k]) \sigma_{ij}^{-1} (\mathcal{O}_j - \mathcal{O}_j[f_k])$$

Evaluate the weights:

$$w_k \propto \chi_k^{n-1} \exp\left[-rac{1}{2}\chi_k^2
ight]$$
 with $\sum_{k=1}^{N_{rep}} w_k = N_{rep}$

■ Compute the expectation value and variance of any observable *P* like:

$$\langle \mathcal{P} \rangle = \frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} w_k \mathcal{P}[f_k] \quad \text{and} \quad \sigma_{\mathcal{P}}^2 = \frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} (\langle \mathcal{P} \rangle - w_k \mathcal{P}[f_k])^2$$

Valerio Bertone

CERN and Albert-Ludwigs-Universität Freiburg

NNPDF2.1 pseudo data

Reweighting with NNPDF2.1 NNLO pseudo data:

only statistical and no systematic error (best case).

Sizable impact on the gluon distribution:

- central value stable (self-consistency of the procedure),
- shrinking of the error at large values of x.

Valerio Bertone

CERN and Albert-Ludwigs-Universität Freiburg

ABM11 pseudo data

Reweighting with ABM11 NNLO pseudo data:

only statistical and no systematic error (best case).

Strong incompatibility of ABM11 with NNPDF2.1:

- only one replica survived the reweighting procedure,
- $t\overline{t}$ differential distributions strongly discriminanting.

Valerio Bertone

CERN and Albert-Ludwigs-Universität Freiburg

Conclusions

- aMC@NLO extremely useful toolbox for the LHC phenomenology.
- Impact of the PS on the $t\overline{t}$ distributions:
 - generally moderate \Rightarrow present PDF fits are a good approximation,
 - some differential distributions (e.g. the p_T of the pair $t\bar{t}$) are strongly dependent on the PS \Rightarrow need for the PS to be included in fits.
- Impact of the $t\overline{t}$ distributions on the PDFs:
 - constraint on the gluon PDF at large *x*,
 - LHC data could be able to discriminate between PDF sets.

Valerio Bertone

CERN and Albert-Ludwigs-Universität Freiburg

イロト 不得 トイヨト イヨト 二日