

Investigation of the use of Diamond, Silicon and a Liquid Helium chamber at 2 K

B. Dehning, T. Eisel, <u>C. Kurfuerst</u>, M. Sapinski, CERN
V. Eremin, IOFFE, Russia
C. Fabjan, HEPHY, Austria

- Motivation
 - LHC Beam Loss Monitoring
 - CryoBLM project
- Beam test measurement setup
- Beam characteristics
- Results
 - Semiconductors
 - Liquid helium chamber
 - Conclusions and outlook

LHC Beam Loss Monitoring

Purpose: damage and quench protection of sensitive elements (magnets and collimators)
Method: measurement of secondary shower particles from beam losses
Detectors: Ionisation chambers, Secondary Emission Monitors and Diamonds

Fastest active machine protection system

Fast

Reliable

Available

BUT

Problem: in triplet magnets signal from debris with similar height as simulated beam losses in steady state case

Cryogenic BLM as solution

- Future BLMs placed closer to:
 - where losses happen and
 - the element needing protection (so inside cold mass of the magnet, 1.9 K)
- Measured dose then better corresponds to dose inside the coil

- Present conditions:
 - low temperature of **1.9 K** (superfluid Helium)
 - radiation of about 1 MGy in 10 years
 - magnetic field of 2 T
 - pressure of 1.1 bar, withstanding a fast pressure rise up to about 20 bar
- Linearity between **0.1 and 10 mGy/s**
- Detector response faster than 1 ms

Stability, reliability and availability: after installation no access possible

Investigated detectors

- Silicon
 - Successfully used at 1 K at CERN in 1976 -""Frozen Spin" Polarized Target"
- Diamond
 - Successfully in use as LHC BLM at room temperature
 - Radiation harder than Si at room temperature
 - Less leakage current than Si at room temperature
 - Does it work in liquid helium?
 - Liquid helium ionisation chamber
 - + No radiation hardness issue
 - Slow (charge mobility of 0.02 cm²/V/s)

CERN PS Beam test area

Semiconductors: Silicon p⁺-n-n⁺ with 300 µm thickness and single crystal chemical vapor deposition (CVD) Diamond with 500 µm thickness

A&T Sector - IPAC 2012

New setups used just yesterday!

In liquid helium

At room temperature

With Erich Griesmayer and Christina Weiss

A&T Sector - IPAC 2012

Inside cryostat

Cable length between detectors and preamplifiers ~ 2 m

Due to long cables advantage of low noise at LHe temperatures is partly lost.

Remark - Cold Amplifier Courtesy CIVIDEC

Goal: No noise at 2 K, no long cable

Tested in liquid nitrogen and liquid helium with pulser and alpha source
Amplifier survives cold+vacuum
Downsides: characteristics change, 1 W power dissipation, 3 feedthroughs needed
→ Not used for beam tests

Beam characteristics

- Particles consist of protons (dominating), positive pions and kaons
- 9 GeV/c particles
- Beam intensity **350 000 particles/spill**
- Size at focus about 1 cm²
- Spill duration of 400 ms (less than 1 particle/µs)
- One spill every 45 s

Single Particle detection

A&T Sector - IPAC 2012

15 / 27

Does diamond work in liquid helium?

Diamond results Single particle (response averaged from ~5000 pulses)

Drift time change of about 28%

Diamond characteristics at 4.2 K

Triggered mean charge: 8.7 fC

Triggered mean FWHM: 3.6 ns

WIEN

Silicon results Single particle (response averaged from ~5000 pulses)

Si MIP Pulses at 100 V 3 Amplitude [µA] 4.2 K + 2.5 **Room temperature** Electron drift 1.5 Hole drift 0.5 0 5 10 15 20 25 30 0 t [ns]

Drift time change at liquid helium temperatures of 54% Additionally: leakage current below pA at liquid helium temperature

A&T Sector - IPAC 2012

19 / 27

Silicon characteristics at 4.2 K

Triggered mean charge: 5.2 fC

Triggered mean FWHM: 2.5 ns

Electronic setup for DC measurements (preferred for final BLM application)

Liquid helium chamber Intensity variation

Linearity is observed in the range from 5 to 140 pC

A&T Sector - IPAC 2012

22 / 27

Applied voltage

Current BLM Ionisation chamber operated at 1.5 kV in proportional region \rightarrow no influence of voltage variation on detector signal Situation in liquid helium:

Silicon laser measurement

Transient current technique measurements: laser applied on one side of Silicon. Charges travel through bulk, giving information about their characteristics.

- All tested detectors work at superfluid helium temperatures:
 - Reduction of the drift time by 28 % for Diamond and 54 % for Silicon
 - Reduction of Silicon dark current from 5 nA at 100V at room temperature to below pA at 2 K.
- With semiconductors a fast detection system for bunch by bunch resolution in the LHC and DC measurements for steady state losses possible
- Liquid helium chamber elegant solution as CryoBLM in the triplet magnets - no issues with radiation hardness

Two critical missing characteristics

- Radiation hardness of the semiconductors at low temperatures - no annealing effect
- 2. Charge collection time of the liquid helium chamber

Issues will be addressed during challenging
irradiation beam tests in 2012.

A&T Sector - IPAC 2012

Acknowledgements Thank you!!!

- CERN Cryogenic team,
- Jaakko Haerkoenen with RD39,
- Erich Griesmayer with CIVIDEC electronics,
- Heinz Pernegger,
- Hendrik Jansen,
- Alessio Mereghetti and
- Colleagues from BE-BI

Backup

Comparison sCVD and Si Single particle detection

A&T Sector - IPAC 2012

Silicon characteristics at 4.2 K Bonus

Pulse shapes comparable for different applied voltages

Detection efficiency changes

Liquid helium chamber fast read out (from last week)

TU

Silicon

Liquid helium chamber

Scintillator

Goal: find timing properties of LHe chamber