Image-guided Radiotherapy using Active Pixel Technology

John Osmond^{1,3}

with

Emma Harris¹, Andrew Clark², Bob Ott¹, Andrew Holland³ & Phil Evans¹

¹The Institute of Cancer Research & The Royal Marsden NHS Trust, ²STFC Rutherford Appleton Laboratory, ³Brunel University

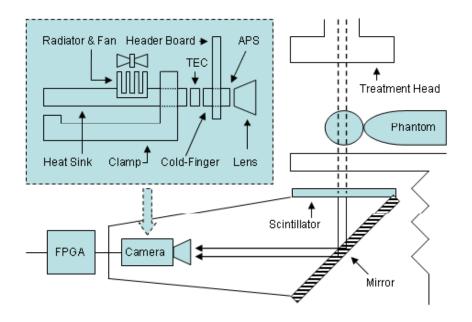
MI³ Project

- Multidimensional Integrated Intelligent Imaging
- £4.4m RCUK Basic Technology Research Grant
- 11 Research Institutes
- Objectives:
 - To extend APS spectral response (e.g. γ-ray, IR, ionising)
 - To develop on-chip intelligence to improve performance
 - To customise devices and demonstrate in novel scientific applications (e.g. Medical, Biological, Security, Space Imaging)

Motivation

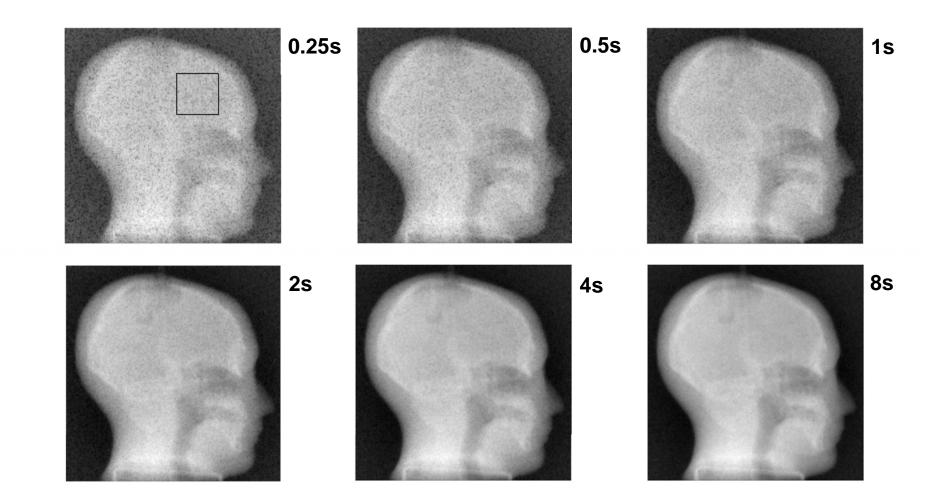
- Radiotherapy: Deliver x-ray dose to cancerous tissue whilst minimising the dose to surrounding healthy tissue.
- Image data taken at planning, pre-treatment, during treatment:
 - Position patient,
 - Verify treatment,
 - Compensate for motion.
- Current systems (e.g. Video, a-Si) are prone to limitations:
 - Substantial additional dose sometimes required,
 - Data not always acquired from beam's eye view,
 - Readout, transfer and downstream processing slow.

CMOS Active Pixel Sensor (APS)

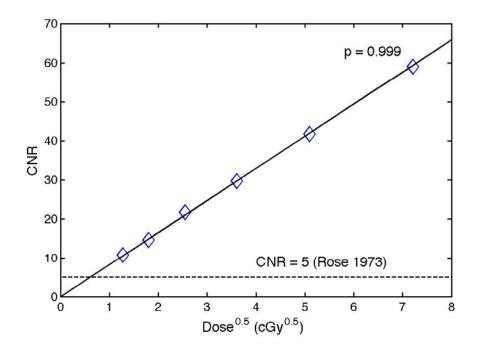

- CMOS APS may address many of these limitations:
 - Single pixel & Region-of-Interest (ROI) readout,
 - Intelligence in pixel & Field Programmable Gate Array (FPGA),
 - Radiation hardness,
- Aims:
 - Build APS (520x520 25 µm pixels, ROI readout, >100 fps),
 - Incorporate APS into MeV imaging system,
 - Assess imaging performance & compare to standard imager,
 - Demonstrate simple logic to verify treatment (offline).

Experimental Set-Up

- Mirror configuration used in camera EPIDs.
- Sensor and electronics remain outside treatment beam.

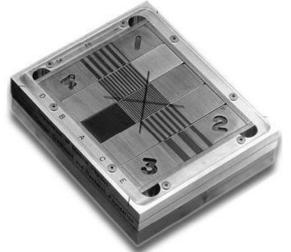


Head Phantom

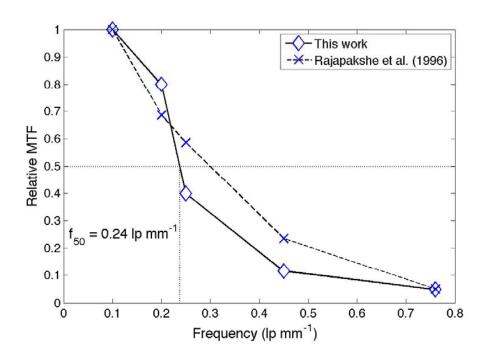


Contrast to Noise Ratio vs Dose

- CNR calculated in square region of skull.
- CNR = 8.1 x Dose^{0.5}.
- CNR = 5, Dose = 0.38 cGy.
- Time = 1/18 s.



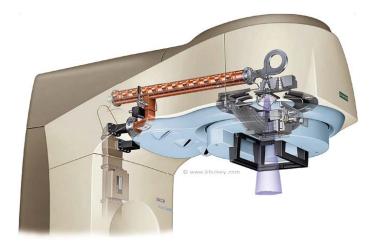
02/09/2008 Position Sensitive Detectors 8



Relative MTF

Calculated using the QC3 phantom:

 Reasonable agreement with comparison data (lower f₅₀)



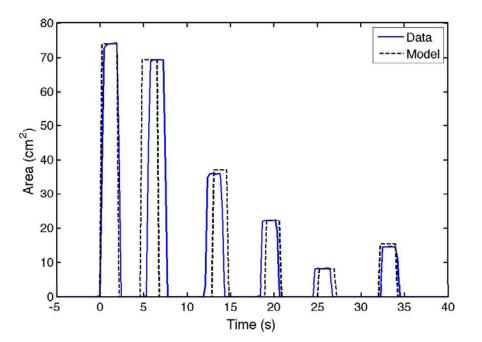
IMRT

- Intensity Modulated Radiation Therapy (IMRT):
 - Linear accelerator (Linac) produces MeV x-ray radiation;
 - Multi-Leaf Collimator (MLC), an array of movable tungsten leaves, shapes the radiation field;
 - Sequence of shaped fields are delivered to form spatially varying dose.



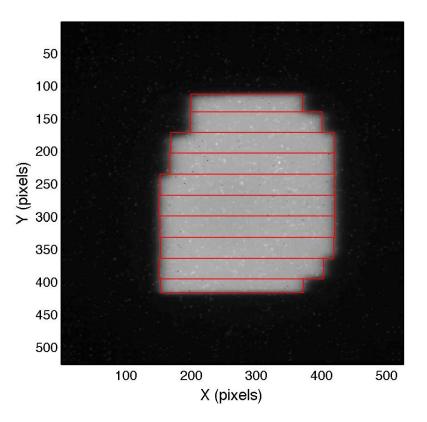
Total IMRT Dose

- Lung treatment delivered in 6 segments over 35 s.
- Good agreement between APS and a-Si flat-panel EPID.



Area-Time Analysis

- Area above threshold (50% of max) vs. time.
- Model based on:
 - Prescribed leaf positions,
 - Prescribed dose and measured dose-rate,
 - Leaf speed, acceleration and time delay.
- Simple algorithm calculated offline in software, then eventually online in FPGA.



02/09/2008 Position Sensitive Detectors 8

Edge-Detection

- Threshold at 50% of max
- Mean scalar discrepancy in leaf edges of 0.03 cm.
- Mean discrepancy in area of < 1%
- ROI readout will greatly improve speed (x26)

Summary and Future Work

- Current system can:
 - Resolve bone structure (~2 cGy) and MLC leaf edges,
 - Verify IMRT to 0.12 s (time), 1 cm^2 (area), 0.3 mm (leaves).
- Limitations:
 - Frame rate required for CNR > 5 is 18 fps (Linac \sim 400 Hz).
- Future work:
 - Develop system using Large Area Sensor (x20 area),
 - Evaluate in contact configuration (greater light collection and resolution, less FOV),
 - Improve FPGA to utilise ROI, increased frame-rate, onsensor intelligence.

Questions?

