

Charge Collection Efficiency for Planar Silicon Detectors after Doses up to $10^{15} n_{eq} \text{ cm}^{-2}$

A. Affolder, P. Allport, G. Casse University of Liverpool

The SLHC Upgrade

- Super-LHC is a factor of 10× luminosity upgrade to the Large Hadron Collider (LHC)
- LHC (2008-2015?), ~1 billion collisions per sec $\mathcal{L} = 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, 10years, 500 fb⁻¹
- Super-LHC (2015?-),
 - ~10 billion collisions per sec
 - $\mathcal{L} = 10^{35} \text{cm}^{-2} \text{s}^{-1}$, 5 years, 2500 fb⁻¹

The main challenges to the vertexing and tracking detectors are:

- Charge collection after high radiation doses
- Density of charged particles (Segmentation)
- Thermal management (Runaway)

This talk focuses on charge collection issues for silicon microstrip detectors

LIVERSITY OF

ATLAS Upgrade Layout

A. Affolder - PSD08, 1st-5th September 2008, Glasgow, Scotland 3

Fluence in Proposed sATLAS Tracker

Mix of neutrons, protons, pions depending on radius R

Long and short strips damage largely due to neutrons

Pixels damage due to neutrons and pions

ATLAS Radiation Taskforce http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/RADIATION/RadiationTF_document.html

Design fluences for sensors (includes 2x safety factor) :Innermost Pixel Layer: $1-1.6*10^{16} n_{eq}/cm^2 = 500$ MradOuter Pixel Layers: $3*10^{15} n_{eq}/cm^2 = 150$ MradShort strips: $1*10^{15} n_{eq}/cm^2 = 50$ MradLong strips: $4*10^{14} n_{eq}/cm^2 = 20$ Mrad

Need to study response to <u>both</u> neutral (neutrons) and charged (proton) particle irradiations

Geometry Choices

NIVERSITY OF

5

P-strip vs. N-strip Readout

Effect of trapping on the Charge Collection Efficiency (CCE)

$$Q_{tc} \cong Q_0 exp(-t_c/\tau_{tr}), \ 1/\tau_{tr} = \beta \Phi.$$

 t_{c} is collection "time", τ_{tr} is effective trapping time "New" n-in-p geometry

Type inversion turns lightly doped material to "p" type

- Holes collected
- Deposited charge cannot reach electrode
 - Charge spread over many strips
 - Lower signal

- Electron collected
 - Higher mobility and ~33% smaller trapping constant
- Deposited charge can reach electrode

Double Junction

Wafer Technology Choices

- Float Zone (FZ)
 - Most experience
 - Relatively low initial V_{FD} (20-150V)

- Magnetic Czochralski(MCz)
 - More oxygen
 - More rad. hard??
 - Less uniformity in resistivity within wafer??
 - Less expensive??
 - Higher initial V_{FD} (150-700 V)

A. Affolder - PSD08, 1st-5th September 2008, Glasgow, Scotland

Miniature Silicon Micro-strip Sensors

Micron/RD50 (6" wafers)

RD50 mask (see: http://rd50.web.cern.ch/rd50/)

Microstrip, ~1x1 cm², 128 strips, 80 μm pitch, ≤300μm thickness

•n-in-p FZ (V_{FD} ~100 V)

•n-in-p MCz(V_{FD}~550 V) •p-in-n FZ (V_{FD}~70 V)

•n-in-n FZ (V_{FD} ~70V)

•p-in-n FZ (V_{FD}~70 V) •p-in-n MCz (V_{FD}~170 V)

•n-in-n MCz (V_{FD}~170 V)

Irradiation and dosimetry (Neutrons): Jozef Stefan Institute, Ljubljana, Slovenia: <u>V. Cindro, et. al.</u>

Irradiation and dosimetry (24 GeV Protons): CERN PS Irrad1 facility: <u>M. Glaser, et. al</u>.

Irradiation and dosimetry (26 MeV Protons): Karlsruhe: <u>W. de Boer, et. al.</u> Most of this work has been performed using material and detectors produced within the framework of RD50.

6 in.

Experimental Setup

- Charge collection efficiency (CCE) measured using detachable read-out analogue electronics chip (SCT128) clocked at LHC speed (40MHz clock, 25ns shaping time).
 - Measurements performed at a temperature down to -25 $^{\circ}$ C with N₂ flush
- ⁹⁰Sr fast electron source triggered with scintillators in coincidence used to generate signal.
- The system is calibrated to the most probable value of the MIP energy loss in a non-irradiated 300µm thick detector (~23000 e⁻).

Liverpool Charge Collection Studies

n-in-p FZ planar technology candidate for all layers Higher doses (>1×10¹⁶ n_{eq} cm⁻²) to be reported soon

n-in-p, n-in-n, p-in-n FZ & MCz comparisons for microstrip doses to follow:

1×10¹⁴ n cm⁻²

12 A. Affolder - PSD08, 1st-5th September 2008, Glasgow, Scotland

2×10¹⁴ n cm⁻²

A. Affolder - PSD08, 1st-5th September 2008, Glasgow, Scotland 13

5×10¹⁴ n cm⁻²

- Design flux for long (9 cm) strips
 - R=70-100 cm
 - Includes 2× safety factor
- p-in-n FZ extremely marginal CCE@500 V
- n-in-n and n-in-p show sufficient CCE@500 V for efficiency tracking (S:N >10:1)
 - Expected noise:
 ~1300 enc
 - Can be reduced to ~950 enc with 20% increase in chip power

Only n-in-n MCz significantly better

1×10¹⁵ n cm⁻²

Only n-in-n MCz significantly better

Neutron Summary

 Both p-in-n FZ and p-in-n MCz sensors show insufficient charge collection for short strip regions (>5×10¹⁴ n_{eq} cm⁻²)

- n-in-n FZ, n-in-p FZ, and n-in-p MCz similar in terms of CCE at these doses
 - n-in-n FZ slightly better at doses < 5×10¹⁴ n_{eq} cm⁻²
- n-in-n MCz shows best performance as expected from CV measurements

Proton Irradiations

٠

G. Kramberger, et.al., 3rd Workshop on Advanced Silicon Radiation Detectors (3D and P-type Technologies), Barcelona 14-16 April 2008, http://indico.cern.ch/conferenceDisplay.py?confld=28165

- At the proposed inner radii of the short strips, charged particles are ~50% of flux
 - V_{FD} measurement with proton irradiation shows significant differences from neutron irradiations
- <u>CCE measurements after pion and</u> more for proton irradiation needed

UNIVERSITY OF

- As of now, we only have n-in-n FZ and n-in-p FZ results available
 - Both show similar CCE
- More n-in-p MCz and n-in-n MCz wafer currently in process
 - New results available in 2009

Mixed Irradiations (MCz)

β > 0 (dominant donor creation) for protons (more point defects than clusters)

NIVERSITY OF

β < 0 (dominant acceptor creation) for neutrons (more clusters than point defects)

Mixed Irradiations (Neutrons+Protons)

- Both FZ and MCz show "predicted" behaviour with mixed irradiation
 - FZ doses add
 - |N_{eff}| increases
 - MCz doses compensate
 - |N_{eff}| decreases

Needs further study with both nMCz and pMCz substrates and differing mixed doses

Conclusions

- The SLHC upgrade is planned for 2015
 - Current p-in-n technology used unable to cope with expected fluences
- Both n-in-p and n-in-n geometries in both FZ/MCz materials have sufficient radiation hardness
 - <u>n-in-n MCZ had best results</u>
- FZ n-in-p (single-sided) chosen technology for short and long strip regions for ATLAS upgrade
 - Cost and availability of high production capacity: Hamamatsu (HPK)
 - Full-size HPK prototypes already in hand

10 cm × 10 cm

 All geometries should be studied further for smaller, highly irradiated, inner regions

CERN Large Hadron Collider

- Proton on proton collisions: $\sqrt{s} = 14 \text{ TeV}$

- <u>Highest Energy Collider Ever</u>
- 25 ns between beam crossings
- Peak Luminosity 10³⁴ cm⁻² s⁻¹
- 20 minimum bias collisions per beam crossing

- First Beams September 2008!!!

21

ATLAS

A. Affolder - PSD08, 1st-5th September 2008, Glasgow, Scotland