

The effect of protons on the performance of swept-charge devices

David Smith, Jason Gow

Imaging for Space and Terrestrial Applications Group School of Engineering and Design Brunel University, Uxbridge, Middlesex, UB8 3PH, UK

Presentation Overview

- The swept-charge device (SCD)
- The Chandrayaan-1 X-ray Spectrometer (C1XS)
- Space radiation environment
 modelling
- Proton irradiation studies
- Conclusions

The Swept-Charge Device

- Developed by e2v technologies with funding from PPARC (now STFC) and the DTI under the IMPACT programme
- Specifically for X-ray fluorescence analysis
 - depletion depth ~40 45 μm
 - X-ray count rate up to 10 kHz
- Manufactured using conventional CCD techniques
- Large detection area of 1.1 cm²
- Near Fano-limited spectroscopy at -15 °C, a temperature that is easily achievable using a TEC

Modular design with 4 devices on one ceramic package

The Swept-Charge Device

Active area is covered with 1725 diagonal electrodes with the isolation channels in the underlying silicon arranged in a herringbone structure

۲

SCD Test Facility

- ⁵⁵Fe source used to provide Mn-K α X-rays
- Oxford Instruments X-ray tube used to provide other calibration lines by secondary fluorescence (Mg, Al, Cu, Si and rock samples)

SCD Test Facility

Operational Modes

- Mode 1
 - resets the charge packets per sample
 - produces an 'image' similar to that produced by a CCD
- Mode 2
 - charge packets progressively sampled
 - 10 ms delay between successive line readouts

Image produced using mode 1

Image produced using mode 2

Operational Modes

Brunel UNIVERSITY WEST LONDON

- Mode 1
 - resets the charge packets per sample
 - produces an 'image' similar to that produced by a CCD
- Mode 2
 - charge packets progressively sampled
 - 10 ms delay between successive line readouts

Anorthosite, at -30°C over 10 minutes

September 2008

Brunel

WEST LONDON

Going to the Moon

- During recent years there has been increased interest in the Moon
 - Chang'e 1 (China)
 - SELENE (Japan)
 - Chandrayaan-1 (India)
 - Lunar Reconnaissance Obiter (USA)
- Origins of the Moon
 - requires identification of elemental abundances of low Z elements such as Magnesium, Aluminium, Silicon, Calcium and Iron
 - the lunar surface provides information about the Earth's surface 4 billion years ago, comparable with the few rocks found from this time period
- Prospecting for suitable sites for a manned lunar base
- A good technology test bed for future missions to Mars and beyond

Launched October 2007

September 2008

November 2008

Launched September 2007

Chandrayaan-1 (Moonshot One)

MIP

- Indian Space Research Organisation (ISRO)
- To be launched using an Indian Polar Satellite Launch Vehicle (PSLV-XL) •
- 2 year mission in a 100 km polar orbit
- Create a 3D atlas of the Moon
- Conduct chemical and mineralogical mapping of the entire lunar surface for distribution of elements
 - Magnesium, Silicon, Aluminium, Calcium
 - Radon, Uranium, Thorium

Chandrayaan-1 X-ray Spectrometer (C1XS)

Detectors:

24 swept charge	devices of 1 cm ² each			
E-range:	1 – 10 keV			
E-resolution:	180 eV @ 1.45 keV			
FOV:	14°			
Ground Pixel:	$25 \text{ km} \times 25 \text{ km} \text{ FWHM}$			
Mass:	5.7 kg			
Power:	35 – 42 V			
Calibration:				
door mounted X-ray sources				
Filters:				
Al filters used to block sunlight				
Elemental Range:				
Mg, Al, Si, Ca (Ti, Fe)				

Chandrayaan-1 X-ray Spectrometer (C1XS)

• Developed at STFC RAL and provided by ESA

Radiation Environment Modelling

- Trapped and solar proton fluence spectra calculated for the 2 year mission duration using ESA SPace ENVironment Information System (SPENVIS) modelling software
- End-Of-Life (EOL) 10 MeV equivalent proton fluence calculated based on launch window, transfer time to the Moon and 2 year on-orbit operation
- Fluence then reduced by instrument shielding and proximity of the Moon:
 - 3 mm Al + 6 mm Ta + spacecraft structure
 - -2π forward of the detectors is 100% shielded by the close proximity of the Moon

(the gyration radius of a 100 keV proton is ~7500 km extending to much larger radii at higher proton energies)

Radiation Environment Modelling

- In early 2008 the calculated EOL fluence was recalculated
- Updated SPENVIS calculations of fluence:
 - extra 1 mm of Al added to instrument surrounding structure (following output of the 2006 study)
 - change in launch date from April to October 2008

(Solar cycle starting up again, but relatively quiet...)

• Total revised EOL 10 MeV equivalent proton fluence is calculated to be:

 $7.5\times10^8\ protons.cm^{-2}$

Proton Irradiation

• **2006**

- Irradiations carried out at Kernfysisch Versneller Instituut (KVI) in the Netherlands with beam time funded by ESA
- 45 MeV proton beam facility
- NIEL used to convert 10 MeV fluence requirement to 45 MeV

• **2008**

- Irradiations carried out at University of Birmingham in the UK
- 10 MeV proton beam facility
- All devices irradiated un-biased at room temperature

Beam exit

SCD module

holder

ISTA

• Summary of 10 MeV equivalent proton fluences investigated:

$7.5 imes 10^8$ protons.cm ⁻²	(100% EOL)	2008 study
$4.3 imes 10^8$ protons.cm ⁻²	(57% EOL)	2006 study
$3.0 imes 10^8$ protons.cm ⁻²	(40% EOL)	2008 study
2.1×10^{8} protons.cm ⁻²	(28% EOL)	2006 study

Leakage Current Profile

• Increase in triangular leakage current profile at -20°C

Leakage Current Profile

• Leakage profiles used to confirm beam uniformity

FWHM at Mn-Kα (5898 eV)

Lunar Regolith Simulant (JSC-1A)

• Spectra at near mission operating temperature of -20°C

X-ray spectra from Mg, Al and Si

• Spectra at near mission operating temperature of -20°C

10 MeV equivalent fluence (protons.cm ⁻²)	Elapsed mission time (%)	FWHM (eV)	FWHM (eV)	FWHM (eV)	FWHM (eV)
		Aluminium	Calcium	Manganese	Copper
0	0	95	122	134	153
$2.1 imes 10^8$	28			226	
$3.0 imes10^8$	40	142	200	268	286
$4.3 imes10^8$	57			300	
$7.5 imes10^{8}$	100	238	350	390	420

Study Conclusions

- After proton irradiation up to a fluence of 7.5 × 10⁸ protons.cm⁻² all SCDs tested were found to remain fully functional
- Leakage current increases proportional to proton dose, increasing by up to 60% after irradiation to 7.5 × 10⁸ protons.cm⁻²
- Resolution of 250 eV FWHM at Mn-Kα is achievable up to a fluence of 3.0 × 10⁸ protons.cm⁻² when operating at -20°C
- For space use, essential to avoid excessive time within the Earth's radiation belts
 - 2.9 × 10⁶ protons.cm⁻².day⁻¹ from trapped protons
 - 0.1 × 10⁶ protons.cm⁻².day⁻¹ from solar protons
- Increased CTI as a result of displacement damage is the dominant component in loss in detector performance
- Calculated EOL proton fluence for C1XS is **worst case**
- C1XS should perform well over the 2 year mission!

Acknowledgements

- Chris Howe, STFC Rutherford Appleton Laboratory
 - for provision of the SCD modules used in the irradiation studies
- Christian Erd, ESA
 - for his comments and support
- Katie Joy and Shoshana Weider, Birkbeck College
 - for providing the lunar regolith simulant
- ESA
 - for funding the KVI proton beam facility time
- Staff at KVI and the University of Birmingham
 - for their support during proton irradiation tests

