X-Ray and Gamma-Ray Detectors for Astrophysics

Jürgen Knödlseder CESR (Toulouse)

Exploring the X-ray and gamma-ray domain

Counting (rare) photons

The 7-dimensional photon

The early days of soft X-ray astronomy

UHURU (SAS-1)

Rocket experiment (Giacconi) (1962)

Characteristics:

- 2 collimated proportional counters
- pointing in opposite directions
- $A_{eff} \sim 700 \text{ cm}^2$
- 2 20 keV

Characteristics:

- 3 Geiger counters with windows of varying thickness (-> energy)
- discovery of first extrasolar X-ray source (Sco X-1)

The advent of focusing X-ray telescopes

Focal plane assembly (position focus at one of 4 detectors):

- 3 HRI: High-Resolution Imaging Detectors micro-channel plates
- IPC: Imaging Proportional Counter
- SSS: Solid State Spectrometer cryogenically cooled Si(Li) detector ($\Delta E \sim 160 \text{ eV FWHM}$, 0.5 4.5 keV)
- FPCS: Focal Place Crystal Spectrometer proportional counter
- $(5 20 \text{ cm}^2, 2 \text{ arcsec}, 8 \text{ msec}, 0.1 3 \text{ keV})$ $(100 \text{ cm}^2, 1 \text{ arcmin}, 63 \text{ msec}, 0.4 - 4 \text{ keV})$ $(\Delta E \sim 160 \text{ eV FWHM}, 0.5 - 4.5 \text{ keV})$ $(0.1 - 1 \text{ cm}^2)$

Microchannel plates (MCP)

Principle

Cygnus Loop

Characteristics:

- 69 million CsI-coated canted glass tubes
- detector dimension (HRC-I): 90 x 90 mm
- \bullet tube dimension: 10 $\mu m \ x \ 1.2 \ mm$
- \bullet 0.4 arcsec angular resolution with 30 arcmin FoV
- Readout pixel size: 6.4 μm (~ 200 Mpixel)
- \bullet 16 μs time resolution
- Poor spectral resolution of $\Delta E/E \sim 1~(0.08$ 10 keV)

Proportional counter image

Charge Coupled Devices (CCDs)

Micro-calorimeters

Considerations:

- absorber with small heat capacity (-> large Δ T) (implies < mm pixels; array needed for reasonable FoV)
- thermistor: temperature-dependent resistance

(doped semiconductor or superconducting transition edge - TES)

- cooling to < 0.1 K (note: liquid He ~4 K)
- nearly constant energy resolution over large band

Suzaku XRS

Characteristics:

- 36 pixel (0.4 mm²) array (micromachined silicon)
- Si thermistors
- Energy range: 0.3 12 keV
- 6 keV photon -> $\Delta T \sim 9 \text{ mK}$
- $\Delta E \sim 6.5 \text{ eV FWHM}$ (R ~ 1000)
- 4 stage cooling system (~60 mK)
- Liquid Helium loss compromised operations

The early days of hard X-ray astronomy

Detectors for coded masks

Rise-time of current pulse measures interaction depth Empiric charge-loss correction improves energy resolution

The futur of hard X-ray astronomy

CALISTE64 hybrid prototype (CEA)

Conventional technology

Characteristics:
64 pixels of 2 mm CdTe 8

• 64 pixels of 2 mm CdTe & readout

3.5mm/40mm

- 4 ASICs for 64 channels (IDeF-X)
- 10 x 10 x 20 mm³ volume
- energy range: 8 100 keV
- stackable
- spatial resolution: 1 mm
- time resolution: ~ 50 ns
- $\Delta E \sim 0.8 \text{ keV} @ 60 \text{ keV} (-10^{\circ}\text{C}, 400 \text{ V})$

The early days of soft gamma-ray astronomy

Common characteristics and features:

• collimators with large fields of view (no imaging)

small detectors and large shields

Ge spectrometers:

- excellent energy resolution
- requires cooling (80 K)
- degrades within few months in space environment (annealing to cure crystals)

COMPTEL

An advanced Compton telescope

Challenges

- Gain sensitivity !!!
- Improve efficiency (reduce detector spacing)
- Maintain or improve angular resolution (increase spatial / energy resolution)
- Maintain or improve energy resolution
- Measure time-of-flight
- Track scattered electron

Si tracker prototype (MEGA)

Ge strip detector (NCT)

Time projection chambers

Liquid XENON TPC

- combines drift chamber with scintillator
- scintillator: fast signal, time-tags event for drift time measurement (t,z)
- wires: x,y position
- anode: energy measurement

Detectors for gamma-ray lenses

Small angle Bragg reflection allows concentration of parallel gamma-ray beam onto a small (cm) focal spot.

CZT M

Detector requirements:

- Pixelised (few mm) detector needed
- Detector stack for MeV stopping power
- Compton reconstruction for background reduction
- Larger detector -> larger FOV

The early-days of hard gamma-ray astronomy

Main elements:

- gamma-pair convertor (scintillator or spark chamber with tungsten plates)
- coincidence Cherenkov telescope (triggers on e⁻ and/or e⁺)
- energy calorimeter for pair absorption (only COS-B)
- anticoincidence shield for charged particle background rejection

EGRET

Characteristics:

- large effective area (COS-B $\sim 50~cm^2)$
- modest angular resolution (most sources remain unidentified)
- long deadtime ~ 200 ms
- expendables (spark chamber requires gas replenishment)
- backsplash at high energies (50% efficiency degradation at 10 GeV)

GLAST

Precision Si-strip Tracker (TKR)

18 XY tracking planes with tungsten foil converters. Single-sided silicon strip detectors (228 µm pitch, 900k strips) Measures the photon direction; gamma ID.

Hodoscopic Csl Calorimeter(CAL)

Array of 1536 CsI(TI) crystals in 8 layers. Measures the photon energy; image the shower.

Segmented Anticoincidence Detector (ACD) 89 plastic scintillator tiles. Rejects background of charged cosmic rays; segmentation mitigates self-veto effects at high energy.

Electronics System

Includes flexible, robust hardware trigger and software filters.

The systems work together to identify and measure the flux of celestial gamma rays with energy between ~20 MeV and ~300 GeV.

Conclusions

- X-ray and Gamma-ray detectors for astrophysics are based on a broad variety of technologies related to the detection physics and the science requirements
- Most detectors are today position sensitive with increasing minaturisation and an increasing number of pixels
- Most detectors are today semi-conductor devices that eventually are cooled
- Soft X-ray astronomy still awaits the advent of space-based micro-calorimeters for fine spectroscopy over a broad energy band
- Hard X-ray astronomy moves from collimators / coded masks towards focusing instruments, implying the need for small pixelised detector matrices
- Soft gamma-ray astronomy needs a major improvement in sensitivity that could be either reached by focusing or large area Compton telescopes (both need 3D pixelised detectors)
- Hard gamma-ray astronomy is in a golden age (also on ground) what comes next?