High Spatial Resolution 3D Probes for Neurobiology Applications

Deborah E. Gunning

EPSRC Overseas Life Science Interface Postdoctoral Fellow

K. Mathieson (U of Glasgow), A.M. Litke (UC Santa Cruz)

PSD Conference '08

2nd September

Outline:

- Background and motivation
 - Why are position sensitive detection probes needed to study neuronal behaviour?
- Arrays:
 - Design requirements
 - Developed fabrication process
- Characterisation
 - Mechanical
 - Electrical
- Next step
- Conclusions and future work

Background

Traditionally:

More recently:

Developing:

Background

• Current bed-of-nails devices:

LOW SPATIAL RESOLUTION!

Bed-of-nails ~ design

Previous studies with planar arrays have shown that 30-60 μ m provides excellent coverage of cells

<10µm

60µm

Design requirements:

Unprecedented dimensions:

- Nanofabricated on silicon wafers
- 61 hexagonally close packed electrodes
- Up to 200µm high spikes (variable)

200µm

- <10µm diameter tips
- 60µm inter-electrode spacing

Bed-of-nails ~ readout system

- Existing 61 channel readout system
 - Extensive and successful use with planar microelectrode arrays
- Bed-of-nails compatible with system
 - Wire bonded in to custom made daughter board
- Specifications:
 - Bandpass filter 50 2000 Hz
 - Noise 5 μ Vrms
 - Sampling rate 20 kHz

W. Dabrowski et al., Biosensors and Bioelectronics **19**, 2004

array placed here

Bed-of-nails ~ fabrication

8. Etch more Si - defining length of needles

Bed-of-nails ~ fabrication results

Bed-of-nails ~ daughter board

- Side 1: Bed-of-nails wire bonded to daughter board
- Side 2: Chamber glued with grounding platinum wire
- Daughter board fixed to 61-channel readout system

Electrical tests

- Tungsten tip needles very high impedance (~5 M Ω)
 - Need ~300 k Ω at 1 kHz
- Lower impedance by platinising:
 - Apply current to electrode through platinic chloride solution
 - Tungsten electroplated with "platinum black"
 - Granular platinum formation increases surface area

Next step

• Placement of daughter board/bed-of-nails into 61-channel system

• Characterise:

– Noise:

noise compares with 61-channel system (8μ Vrms in saline) signal improvement on 61-channel system (>200 μ V) signal to noise improvement

• Recordings from:

- Mouse retina
 - Dr. A. Sher, Dr. D. Feldheim at UC Santa Cruz
 - More comprehensive study of retina
- Cortical slices
 - Dr. J. Beggs, Indiana University
 - Further study neuronal firing behaviour and phenomena

Conclusion and future work

- Unique array developed to study neural networks
 - Unprecedented dimensions
 - Mechanically stable
 - Promising electrical characteristics

Future:

- Arrays of longer needles (up to 500µm)
- Arrays of multi-length needles
 - Proof of principle:
- Arrays on flexible substrates
 - *In-vivo* studies

