

Silicon Detectors in 3D-Technology

Richard Bates¹, Gian-Franco Dalla Betta², Simon Eckert¹, Lars Eklund¹, Celeste Fleta¹, Karl Jakobs³, Susanne Kühn³, Manuel Lozano⁴, Gregor Pahn³, Chris Parkes¹, <u>Ulrich Parzefall³</u>, Giulio Pellegrini⁴, David Pennicard¹, Alberto Pozza², Thomas Szumlak¹, Andrea Zoboli^{2,5}, Nicola Zorzi²

1) Glasgow University
 2) FBK-irst, Trento
 3) Universität Freiburg
 4) CNM Barcelona
 5) Universita di Trento

8th International Conference on Position Sensitive Detectors (PSD), Glasgow, Scotland

-Part of this work is performed in the framework of the CERN RD50 Collaboration-

Introduction

- 3D Detectors started 1996
- Harvesting 12 years later
 - 3D Projects in ATLAS, RD50,...
 - At PSD08, six 3D-related talks and posters

3D Detector Idea: Parker, Kenny, Segal, *NIM* **A395**, (1997) 328

Disclaimer:

At VERTEX 2008, Chris Parkes presented an overview of 3D detectors, see: http://indico.cern.ch/conferenceDisplay.py?confId=30356

Chris extensively covered 3D pixel detectors and processing. I will concentrate on 3D strips, especially STC.

Motivation: The SLHC

- LHC Upgrade to Super-LHC (SLHC) planned for 2016:
 - Increase luminosity by factor ten compared to LHC
 - Massive increase of radiation dose for silicon detectors, making radiation damage the major concern
 - ATLAS will need to replace Inner Tracking system to cope with SLHC
 - Not clear if radiation hardness of planar Silicon pixel or strip detectors is sufficient

→ 3D designs investigated for SLHC pixel detectors

→ Study 3D short
 strip detectors
 (~2-3cm strip length)

Reminder: The 3D Principle

- 3D detectors decouple thickness (=signal) and depletion voltage
- Depletion and charge collection is sideways
- Superior radiation hardness "by design"
 - less trapping (as collection distances are short)
 - Full depletion voltage less affected by growing acceptor concentration (V_{dep} ~ distance²)
- Original 3D designs
 - Brilliant but complex
 - conceived as pixel devices
 - can connect rows of columns to form strips

n-type substrate

3D Designs

- Original 3D
 - Good performance but costly and complex to manufacture
 - Mainly made for pixel applications
- Single Type Column (STC) 3D
 - Much simpler: columns on one side only
 - Produced successfully: Pixel and strip detectors exist
 - STCs tested extensively
- Double Type Column (DTC) 3D
 - Better than STC, yet simpler than classic 3D
 - The next step in "simpler 3Ds"

3D STC strip detector

- STC sensors made by FBK-irst (Trento)
- Initial fast lateral depletion at 5V for FZ Si
- Then depleting like a planar detector
- Low field in central region remains
 - indep. of bias voltage
 - bias affects only field under columns towards back side

xy-null field lines

3D STC Module with FZ sensors

- 3D STC strip detectors are *"like planar strips plus columns under the strips"*
 - 80µm strip pitch, 80µm or 100µm column pitch
 - 300µm thick
 - 64 strips, 2cm strip length
 - Si: FZ p-spray or FZ p-stop

FZ p-stop sensor

Noise Behaviour

- 3D devices will have higher capacitance (and noise!) than planar designs
- Measure noise at LHC readout speed (40MHz)
- Noise is
 - Uniform across sensor
 - Rapidly decreasing with bias voltage until lateral full depletion at ≈ 25V
 - Then slowly decreasing as sensor continues to deplete towards backside
 - Typical noise 1200 ENC (corresponds to 6-7cm strips in planar design)
- Micro-discharge starting at 95V (before sensor is fully depleted)

Signal: IR Laser Measurements

- Three methods available to generate charge in Si:
 - Laser
 - Radioactive source
 - High-energy particles (MIP)
- Example: pulsed IR Laser
 - Focused to 5µm spot size
 - Coupled into fiber
 - Scan detector surface to study uniformity of charge collection efficiency
 - Scan area is unit cell
- Narrow region of lower CCE (≈5µm) on p-spray sensor
- Likely cause is central low field region
- Signal drops by ≈25% 30%

- Test before and after irradiation to 10¹⁵N_{eq}/cm²
- Charge collection is reduced by irradiation
- Given sufficient HV stability, the irradiated detector collects the same charge as prior to irradiation
- V_{FD} ~ 230V as predicted for CZ p-type

3D STC on CZ p-type Si

2007 Beam Test

- Two 3D STC detectors were tested with 180GeV SPS Pions in Autumn 2007
- Main aim: position-resolved study of CCE, signal and signal shape
- Signal measurement with ADC Calibration: Landau MPV at 2.4 fC (70% of 3.5 fC)
- Note: Entire Test Beam analysis still preliminary
 - work on tracking & alignment ongoing

Efficiency in Beam Test

- Alignment much better <u>orthogonal</u> to strips due to small beam shape
- Study 1-D efficiency orthogonal to strip
 - number of hits on 3D matched to tracks as a function of distance to strip "residual"
 - map entire detector onto one strip
- Low efficiency at
 - large distance to strip: low field region
 - strip center: no charge deposition in hollow columns

•

-

-

-

-

Comments on 3D-STCs

- Overall charge level low (~2.3fC) due to ballistic deficit arising from 3D-STC field configuration
- 3D-STC after irradiation to 10¹⁵N_{eq}/cm² are still operational
- Same CCE as unirradiated device, but at much higher bias voltage
- 3D STC designs are first steps towards simple costeffective 3Ds

Need to move from STC to DTC!

Double-sided 3D detectors

- Improved 3D structure proposed by G. Pellegrini (CNM): n- and p-type columns etched from opposite sides
- Similar design (DDTC) produced independently by FBK-irst (Trento)
 - Columns do not pass through full substrate thickness
 - Reduces low field regions, field becomes driven by bias voltage
- Expect faster signals and higher CCE
- Should compare well to conventional 3D design

- First detectors exist
- Simulations predict superior radition hardness

First DTC Results: Strip detector IV

- CNM 3D DTC detectors
- 128 strips, 50 holes/strip, pitch 80µm, length 4mm
- Strip currents ~100pA (T=21°C) in all 4 detectors
- Can reliably bias detectors to 50V (20 times lateral depletion voltage), no breakdown
- Capacitance 5pF / strip
- Guard ring currents vary:
 - Highest 20µA at 10V
 - Lowest 0.03µA at 50V
- Irradiated with 5.10¹⁵
 N_{eq} in Ljubljana
- IV curves roughly as expected for fluence

Ulrich Parzefall, Universität Freiburg

Conclusions & Outlook

- Extensive tests on modules with STC 3D detectors. STCs are functional detectors, and radiation hard
 - Too slow for a 40 MHz SLHC (field configuration)
- Radiation hardness of planar designs can be increased with equivalent 3D design
 - higher noise, higher price
 - ATLAS has large 3D program for pixel detector underway
- Future 3D tests will concentrate on DTC devices
 - Simulations and first tests indicate faster charge collection
 - 2008 Test Beam (CMS/RD50) data are on tape

Related Talks & Posters:

- G. Pellegrini "Fabrication and simulation of Novel Ultra Thin 3D Silicon Detectors..."
- D. Gunning "High spacial resolution probes for neurobiology applications"
- N. Wermes "Pixel detectors for charged particles "
- C. Fleta "Characterization of double-sided 3D Medipix 2 detectors"
- F.G. Huegging "Sensor concepts for future hybrid pixel detectors"
- A. Zoboli "Laser and beta source setup characterization of 3D DDTC detectors... "

3D Results Overview

- Summary of results from planar and 3D detectors by Cinzia
- Superior radiation hardness (ATLAS 3D pixel collaboration)
- Results for 3D strip detectors above 10¹⁵N_{eq} still unavailable

Opposite Polarity Signals

0.5

-0.5

20

Ulrich Parzefall, Universität Freiburg

40

60

V

X

- 3D STC: Opposite polarity signals on neighbouring strips
- Seen very clearly in Laser
- Also visible in Beam Test
 - Traditional clustering algorithms would fail
- Effect only observable for neighbouring strips, but must also be present within one strip
 - low charge for hits between columns of the same strip
- Reason is field configuration
 - charges drift mainly sideways to/away from columns
 - low field means slow hole drift to backside, t_{drift} >25ns
- This is an effect of STC design
- Given sufficient statistics and resolution, this could be visible in Test Beam analysis

Beam Test:

Signal on neighbour

80

100

120 time [ns]

- Single Type Column (STC) 3D design:
 - Columns not completely etched through wafer → no support wafer necessary
 - STC sensors made by FBK-irst (Trento)
- Processing less complex and costly compared to standard 3D
- Si bulk can be n-in-p material
 - no type-inversion
 - Collection of e- (faster, less trapping)
 - Wafers: Czochralski or Floatzone-Si
 - P-spray or p-stop isolation (to avoid conductive layer between n-implants)
- Low field region exists (slow drift)
 - field given by doping level (not U_{bias})
 - LHC is fast, so expect reduced CCE at 40 MHz
 - 3D STC strip designs interesting for innermost strip layers Electrons are swept
 - 3D STC strip detectors are away by the "*like planar strips plus columns under the strips*"

50µm

High Resolution Laser Scan

>200 il ui leus il 150 50 is 0

- 2μ m step size
- 50µm×50µm area
- y-axis along the strips
- At variable bias voltage

 $V_{bias} = 50V$

-0.05

-0.06 m¹

-0.08

-0.08

-0.03-0.04 -0.3 -0.25 -0.2 -0.15 -0.1

0.1

0

 $-0.05 \ 0 \ x_{s} [mm]$

