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Introduction

• 3D Detectors started 1996
• Harvesting 12 years later

3D Detector Idea: Parker, Kenny, 
Segal, NIM A395, (1997) 328

g y
– 3D Projects in ATLAS, RD50,…
– At PSD08, six 3D-related talks and posters

Disclaimer:Disclaimer:

At VERTEX 2008, Chris Parkes presented an overview of 3D detectors, see: 
http://indico.cern.ch/conferenceDisplay.py?confId=30356

Chris extensively covered 3D pixel detectors and processing. I will concentrate
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Chris extensively covered 3D pixel detectors and processing. I will concentrate 
on 3D strips, especially STC.



Motivation: The SLHC
• LHC Upgrade to Super-LHC (SLHC) planned for 2016:  

– Increase luminosity by factor ten compared to LHC
– Massive increase of radiation dose for silicon detectors, making radiation , g

damage the major concern
– ATLAS will need to replace Inner Tracking system to cope with SLHC
– Not clear if radiation hardness of planar Silicon pixel or strip detectors 

is sufficientis sufficient

3D designs 
i ti t d f SLHCinvestigated for SLHC 
pixel detectors 

Study 3D short 
t i d t tstrip detectors 

(~2-3cm strip length)
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from Ian Dawson



Reminder: The 3D Principle
• 3D detectors decouple 

thickness (=signal) and 
depletion voltage p+np+

3D PLANAR
p+deplet on voltage

• Depletion and charge 
collection is sideways

• Superior radiation
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distances are short)
– Full depletion voltage less 

affected by growing 
acceptor concentration 

n columns p-columns
wafer surface

acceptor concentrat on
(Vdep ~ distance2)

• Original 3D designs 
– Brilliant but complexBrilliant but complex
– conceived as pixel devices
– can connect rows of 

columns to form strips
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columns to form strips
n-type substrate



3D Designs
• Original 3D

– Good performance but costly and 

n+ columns

p y
complex to manufacture

– Mainly made for pixel applications 
• Single Type Column (STC) 3D nsSingle Type Column (STC) 3D

– Much simpler: columns on one 
side only
P d d f ll Pi l d

23
0 

co
lu

m
n

– Produced successfully: Pixel and 
strip detectors exist

– STCs tested extensively
• Double Type Column (DTC) 3D

– Better than STC, yet simpler 
than classic 3D

guard ringbias ring

3D STC strip detectorthan classic 3D
– The next step in “simpler 3Ds”

3D STC strip detector
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3D STC Simulations – Depletion
1) Ubias=0V 2) Ubias=2V • STC sensors made by FBK-irst 

(Trento)
• Initial fast lateral depletion at 

5V for FZ Si5V for FZ Si
• Then depleting like a planar 

detector
• Low field in central region 

iremains
– indep. of bias voltage
– bias affects only field under 

columns towards back side 

3) Ubias=5V 4) Ubias=20V xy-null field lines
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3D STC Module with FZ sensors

carbon for

Electronics part Sensor part
• 3D STC strip detectors are 

“like planar strips plusATLAS SCT 
electronics

3D-sensor

carbon for 
coolingRebondable 

Fan-ins

like planar strips plus 
columns under the strips”
– 80μm strip pitch, 80μm or 100μm

column pitchcolumn pitch
– 300μm thick
– 64 strips, 2cm strip length

Si: FZ p spray or FZ p stop

FZ p-stop sensor

– Si: FZ p-spray or FZ p-stop

~ 20 mm

PSD 2008, Glasgow, 4th September 2008 Ulrich Parzefall, Universität Freiburg 7

~ 20 mm



Noise Behaviour
• 3D devices will have 

higher capacitance (and 
noise!) than planar 

noise in ke-

p
designs 

• Measure noise at LHC 
readout speed (40MHz)

e 
in

 k
e-

• Noise is
– Uniform across sensor
– Rapidly decreasing with 

bias voltage until lateral

no
is

e

bias voltage until lateral 
full depletion at ≈ 25V

– Then slowly decreasing 
as sensor continues to 
deplete towards 
backside

– Typical noise 1200 ENC
(corresponds to 6-7cme 

in
 k

e-

Full lateral
depletion

(corresponds to 6 7cm 
strips in planar design)

• Micro-discharge starting 
at  95V (before sensor is 
f ll d l d)Unbonded channels' noise

planar detector-like depletion

no
is

e

PSD 2008, Glasgow, 4th September 2008 Ulrich Parzefall, Universität Freiburg 8

fully depleted)Unbonded channels  noise



Signal: IR Laser Measurements
• Three methods available to 

generate charge in Si: 
– LaserLaser 
– Radioactive source 
– High-energy particles (MIP) 

• Example: pulsed IR LaserExample: pulsed IR Laser
– Focused to 5μm spot size
– Coupled into fiber
– Scan detector surface to study Laser scan areay
uniformity of charge collection 
efficiency
– Scan area is unit cell    

N i f l CCE (≈5 m)
Ubias = 80V

• Narrow region of lower CCE (≈5µm) 
on p-spray sensor

• Likely cause is central low field 
regionregion

• Signal drops by ≈25% - 30%
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Signal: Source
• 3D-STC modules tested 

with e- from Sr90 beta 3D STC on CZ p-type Sisource
• Test before and after 

irradiation to 1015N /cm2

3D STC on CZ p type Si

irradiation to 10 Neq/cm
• Charge collection is 

reduced by irradiation
• Given sufficient HV 

stability, the irradiated 
detector collects the 
same charge as prior to 
irradiation 

• V ~ 230V as predicted• VFD ~ 230V as predicted 
for CZ p-type
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2007 Beam Test

• Two 3D STC detectors 
t t d ith 180G V m

m
]

were tested with 180GeV 
SPS Pions in Autumn 2007

• Main aim: position-resolved Tr
ac

k 
y 

[m

p
study of CCE, signal and 
signal shape

• Signal measurement with Track x [mm]• Signal measurement with 
ADC Calibration:
Landau MPV at 2.4 fC
(70% f 3 5 fC)

rack x [mm]

(70% of 3.5 fC)

• Note: Entire Test BeamNote  Entire Test Beam 
analysis still preliminary
– work on tracking & 

alignment ongoing
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alignment ongoing



Efficiency in Beam Test

• Alignment much better 
orthogonal to strips due

plot range 
80 µmorthogonal to strips due 

to small beam shape
• Study 1-D efficiency 

orthogonal to strip

µm

orthogonal to strip 
– number of hits on 3D 

matched to tracks as 
a function of distance 
to strip „residual“ 

– map entire detector 
onto one strip

• Low efficiency at
– large distance to 

strip: low field region
residual

– strip center: 
no charge deposition 
in hollow columns

Strip centre

Note: only relative efficiency is 
measured!
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Strip centre
Absolute eff. higher due to DAQ 
desynchronisation, dead strips



Efficiency in Beam Test
plot range 300 µm

• Can also study 1-D 
efficiency parallel to strip

“Lookin for columns“

plot range  300 µm

– Looking for columns  
– Restrict to hits 10μm 

each side of strip centre
– Map 20μm wide bands

cut out 
20 µm
regions

– Map 20μm wide bands 
from entire detector 
onto 300μm long cell

– Structure with 100μm Structure w th 00μm
spacing is visible, but 
washed out due to

• Track Resolution
• 2.5°Tilt angle and angle 

uncertainty
– Columns have lower 

efficiencyefficiency
– Detailed analysis still 

ongoing
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Column positions



Comments on 3D-STCs
• Overall charge level low 

(~2.3fC) due to ballistic Signal shapes from 2007 test beam( 2.3fC) due to ballistic 
deficit arising from 3D-STC 
field configuration 
3D STC after irradiation to

Signal shapes from 2007 test beam

A
D

C
 c

ou
nt

s]

• 3D-STC after irradiation to 
1015Neq/cm2 are still 
operational

Si
gn

al
 [A

• Same CCE as unirradiated 
device, but at much higher 
bias voltageg

• 3D STC designs are first 
t t d i l tsteps towards simple cost-

effective 3Ds
Need to move from STC to DTC!
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Double-sided 3D detectors
• Improved 3D structure 

proposed by G. Pellegrini 
(CNM): n- and p-type columns

p+
STCDTC

p+
(CNM): n- and p-type columns 
etched from opposite sides

• Similar design (DDTC) 
produced independently by n+30

0u
m

30
0u

m

produced independently by 
FBK-irst (Trento)
– Columns do not pass 

through full substrate UBM/bumpUBM/bump

n+

through full substrate 
thickness 

– Reduces low field regions, 
fi ld b d i b

Passivation

p+ doped

Oxide Metal

50μm

UBM/bump

n-type Si

Passivation

p+ doped

Oxide Metal

50μm

UBM/bump

n-type Si

field becomes driven by 
bias voltage

• Expect faster signals and 
hi h CCE

p p

300μm

10μm

Poly 3μm

TEOS oxide 2μm
p p

300μm

10μm

Poly 3μm

TEOS oxide 2μm

higher CCE 
• Should compare well to 

conventional 3D design 50μm
n+ doped

n+ doped

50μm
n+ doped

n+ doped

PSD 2008, Glasgow, 4th September 2008 Ulrich Parzefall, Universität Freiburg 15

55μm pitch

Oxide
Metal

55μm pitch

Oxide
Metal



Double Type Column Detectors: DDTC

• First detectors exist
• Simulations predict superior radition hardnessSimulations predict superior radition hardness

25000

CNM20000

25000

ro
ns

] 

3D simulation

Double-sided 3D, 250 μm, simulation! [1]
n-in-p (FZ), 280 μm [2,3]
n-in-p (MCZ), 300μm [4,5]p-in-n p-in-n (MCZ), 300μm [6]

i (FZ) 140 500V [7]
n-in-p

pixelsstrips

FBK-irst
10000

15000

na
l [

el
ec

tr 3D simulation n-in-p (FZ), 140 μm, 500V [7]
p-in-n (EPI), 150 μm [8,9]
p-in-n (EPI),   75μm [10]

p

140μm p-FZ

[1] 3D, double sided, 250μm columns, 300μm substrate [Pennicard 2007]
[2] p-FZ 280μm (-30oC 25ns) strip [Casse 2007]

5000

sig
n

75μm n-EPI

150μm n-EPI
[2] p FZ, 280μm, ( 30 C, 25ns), strip [Casse 2007]
[3] p-FZ, 280μm, (-30oC, 25ns), strip [Casse 2004]
[4] p-MCZ, 300μm, (-30OC, μs), pad [Bruzzi 2006]
[5] p-MCZ, 300μm, (<0OC, μs), strip [Bernadini 2007]
[6] n-MCZ, 300μm, (-30OC, 25ns), strip [Messineo 2007]
[7] p-FZ, 140μm, (-30oC, 25ns), strip [Casse 2007]
[8] n-EPI, 150μm, (-30OC, 25ns), strip [Messineo 2007]
[9] n-epi Si, 150μm, (-30oC, 25ns), pad [Kramberger 2006]
[10] n-epi Si, 75μm, (-30oC, 25ns), pad [Kramberger 2006]

See also: [M. Bruzzi et al. NIM A 579 (2007) 754-761]
[H S d i ki IEEE NSS 2007 RD50 lk]

1014 1015 1016

Φeq [cm-2] 
M.Moll 2007

[H.Sadrozinski, IEEE NSS 2007, RD50 talk]
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First DTC Results: Strip detector IV
• CNM 3D DTC detectors
• 128 strips, 50 holes/strip, 

pitch 80μm length 4mm
strip detector 4

1.0E-05

1.0E-04
Pre-IrradiationPost-Irradiation to 5·1015Neq

pitch 80μm, length 4mm
• Strip currents ~100pA 

(T=21˚C) in all 4 detectors
• Can reliably bias detectors 1 0E 07

1.0E-06
Guard ring

• Can reliably bias detectors 
to 50V (20 times lateral 
depletion voltage), 
no breakdown

1.0E-08

1.0E-07

I(A
)

• Capacitance 5pF / strip 
• Guard ring currents vary: 

– Highest 20μA at 10V
1.0E-10

1.0E-09

Strip

Neighbours

Highest 20μA at 10V
– Lowest 0.03μA at 50V

Irradiated with 5 1015

1.0E-11
0.0 10.0 20.0 30.0 40.0 50.0

V(V)
• Irradiated with 5·1015

Neq in Ljubljana
• IV curves roughly as 

t d f fl
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expected for fluence



Conclusions & Outlook
• Extensive tests on modules with STC 3D detectors. 

STCs are functional detectors, and radiation hard
– Too slow for a 40 MHz SLHC (field configuration)g

• Radiation hardness of planar designs can be increased with 
equivalent 3D design

hi h n is hi h p i– higher noise,  higher price 
– ATLAS has large 3D program for pixel detector underway

• Future 3D tests will concentrate on DTC devicesFuture 3D tests will concentrate on DTC devices
– Simulations and first tests indicate faster charge collection
– 2008 Test Beam (CMS/RD50) data are on tape

Related Talks & Posters: 

G. Pellegrini “Fabrication and simulation of Novel Ultra Thin 3D Silicon Detectors…”

D G i “Hi h i l l i b f bi l li i ”D. Gunning “High spacial resolution probes for neurobiology applications”
N. Wermes “Pixel detectors for charged particles ”
C. Fleta “Characterization of double-sided 3D Medipix 2 detectors”
F G Huegging ”Sensor concepts for future hybrid pixel detectors”
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F.G. Huegging Sensor concepts for future hybrid pixel detectors
A. Zoboli ”Laser and beta source setup characterization of 3D DDTC detectors… ”



BACKUP ONLY
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3D Results Overview
• Summary of results 

from planar and 3D 
d t t b Ci idetectors by Cinzia 

• Superior radiation 
hardness (ATLAS (
3D pixel 
collaboration) 

• Results for 3D strip• Results for 3D strip 
detectors above 
1015Neq still 

il blunavailable
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Opposite Polarity Signals

Vbias = 10V

• 3D STC: Opposite polarity 
signals on neighbouring strips

• Seen very clearly in Laser

IR-Laser

y y
• Also visible in Beam Test

– Traditional clustering 
algorithms would fail

• Effect only observable for• Effect only observable for 
neighbouring strips, but must 
also be present within one strip
– low charge for hits between 

l f th t icolumns of the same strip
• Reason is field configuration

– charges drift mainly sideways 
to/away from columns y

– low field means slow hole drift 
to backside, tdrift >25ns

• This is an effect of STC design
Given sufficient statistics and• Given sufficient statistics and 
resolution, this could be visible 
in Test Beam analysis 

Beam Test:

Signal on 
neighbour
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neighbour



3D Single Type Columns Design
• Single Type Column (STC) 3D design: 

– Columns not completely etched through 
wafer no support wafer necessary metallisation oxide

Cross section between two electrodes:

– STC sensors made by FBK-irst 
(Trento)

• Processing less complex and costly 
compared to standard 3D P+ -stop

n+

0 
µm

compared to standard 3D
• Si bulk can be n-in-p material 

– no type-inversion
– Collection of e- (faster, less trapping) metallisation

p

p+

p

30

( , pp g)
– Wafers: Czochralski or Floatzone-Si
– P-spray or p-stop isolation (to avoid 

conductive layer between n-implants)
Low field region exists (slow drift)

MIP
Piemonte et al. NIMA 541 (2003) 441

• Low field region exists (slow drift)
– field given by doping level (not Ubias) 
– LHC is fast, so expect 

reduced CCE at 40 MHz

e  h

15
0µ

m

ek
tro

de

ec
tro

de Holes drift in 
the central 
region and 

– 3D STC strip designs interesting 
for innermost strip layers

– 3D STC strip detectors are 
“like planar strips plus 

1
0µ

m

n+
 e

le

n+
 e

le

Electrons are swept 
away by the 
transversal field

diffuse towards 
backside 
contact
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like planar strips plus
columns under the strips” 15

0



High Resolution Laser Scan

• 2µm step size
Vbias = 25V

• 50µm×50µm area
• y-axis along the 

stripsstrips
• At variable bias 

voltage 

Vbias = 50V Vbias = 75V

– Width independent of bias for Vbias > 25V
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Efficiency
• Repeat study also in 2D
• Fold all data onto oneFold all data onto one 

small cell (80μm x 300 
μm)

• Inter-strip regionsInter strip regions 
coincide with steep drop 
to lower efficiency 

• Columns just about visible 
as low efficiency areas?
T stb m n l sis still• Testbeam analysis still 
ongoing with improved 
tracking, re-alignment 
and more statisticsand more statistics
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