

Advanced GAmma Tracking Array

Performance of an AGATA prototype detector estimated by Compton-imaging techniques

Francesco Recchia INFN - Legnaro

on behalf of the AGATA collaboration

<i>Design values: 5 mm of position resolution assumed</i>		
Efficiency: 43% (M _γ =1)	28% (Μ _γ =30)	
today's arrays ~10%	5%	
Peak/Total: 58% (Μ_γ=1)	49% (Μ_γ=30)	
today ~55%	40%	
Angular Resolution: ~1°		
FWHM (1 MeV, v/c=50%)	<mark>∼ 6 keV</mark>	
today	∼40 keV	

- 180 large volume 36-fold segmented Ge crystals packed in 60 triple-clusters
- Digital electronics and sophisticated Pulse Shape Analysis algorithms
- $\square \qquad \text{Operation of Ge detectors in position sensitive mode for} \\ \gamma\text{-ray tracking}$

The position resolution required for the AGATA detectors

Simulations suggest that the overall performance depends on the attainable **position resolution**

A **test-beam experiment** has been performed to measure this parameter in realistic experimental conditions

Setup of the in-beam experiment

Symmetric triple cluster

d(⁴⁸ Ti, ⁴⁹ Ti)p		
BEAM	⁴⁸ Ti	100 MeV
TARGET	⁴⁸ Ti + ² H	220 µg/cm²
Si detector DSSSD	Thickness: 300 μm	
	32 rings, 64 sectors	
AGATA symmetric triple-cluster		

experiment performed at IKP of Cologne

Digitizers:		
30 XIA DGF 4c cards		
40MHz	14 bit	

Doppler correction using PSA results

Doppler correction using PSA results

Doppler correction using PSA results

Simulation vs Experiment

Why Compton imaging?

- 15 days of beam-time to perform the test experiment
- □ 1 year of analysis
- PSA will be on-line

 Need for a *simpler* procedure
Need an *prompt feed-back* from on-line analysis

 In-beam experiment:
typical conditions of future use

Compton imaging performance

- Error on Compton identification of source direction from:
- Position resolution (axis)
- Energy resolution (scattering angle)
- Compton profile (scattering angle)

Imaging setup at LNL

AGATA prototype detector

TNT2 Digitizers: 4ch 14bit 100MHz

⁶⁰Co source

Simple back-projections

Comparison to MC simulation

CONCLUSIONS

- Position resolution extracted by in-beam experiment and Compton imaging is 5 mm FWHM.
- This value is in line with the design assumptions of the AGATA spectrometer, confirming the feasibility of γ-ray tracking.
- AGATA will have a <u>huge impact on</u> <u>nuclear structure studies</u> (first phase of AGATA: LNL 2009...)
- Possible applications of γ-ray tracking detectors to imaging.

Basic implementation of LMML

generation γ-ray spectrometer

AGATA is the next generation γ-ray spectrometer which will be used at radioactive

ion beam facilities:

- □ High **efficiency** and **P/T** ratio.
- Capability to stand a high counting rate.
- Good position resolution on the individual γ interactions in order to perform a good Doppler correction and measure the linear polarization

Compton imaging application

