

CMS Tracker Upgrade Issues and Plans

Alexander Dierlamm on behalf of the CMS Tracker Collaboration

Sept. 4th, 2008

First beam in LHC: September 10th First collisions at 10TeV: October, 2008

Sept. 4th, 2008

PSD08 A. Dierlamm, Universität Karlsruhe (TH)

Why Upgrade?

- Assume basic discoveries done 2017 (Higgs, SUSY,...?)
- Then, more precise measurements of couplings, properties of SUSY particles, ...
- Study of low-rate phenomena such as $H \rightarrow \mu \mu$, FCNC of top, ...
- Luminosity increase (current design 10^{34} cm⁻² s⁻¹) needed and planned in two phases
 - Phase I (~2013): Tuning of machine parameters to get 2.10³⁴ cm⁻² s⁻¹ Replacement of pixel detector
 - Phase II (~2018): LHC and the pre-accelerators have to undergo major changes Luminosity up to 10³⁵ cm⁻² s⁻¹→ SLHC Complete new tracker
- Design and construction of new detectors takes time (CMS Tracker plans started 1994)
 - 5 years R&D
 - 2 years Qualification
 - 3 years Construction
 - 6 months Installation and Ready for Commissioning
- Can and have to profit from R&D done already
- Will benefit from lessons learnd with current tracker

Integrated Luminosity

Phase I (2013)

- Luminosity ramp up to ~ $2 \ 10^{34} \text{cm}^{-2}\text{s}^{-1}$
- Upgrade of inner pixels only
- New pixel detector could have
 - different sensor material (p-type bulk) and pixel size
 - larger read-out buffer

- µ-twisted pair cables instead of kapton cables to save material budget and efford
- CO_2 cooling
- a fourth barrel layer (prepare for population in Phase II?)

Phase II Issues

- High occupancy
 - change sensor design: finer pitch, shorter strips
- Higher radiation levels
 - choose best sensor material
 - ASICs ok, but well established
 0.25µm CMOS process not accessible
- Keep level 1 trigger rate at 100kHz
 - Tracker data available for L1 trigger
- Reuse most of power cables and cooling pipes
 - max. current in cables limited
 → alternative powering scheme
- Reduce material budget

10³⁴ cm⁻²s⁻¹, 20 mbe/bx

10³⁵ cm⁻²s⁻¹, 400 mbe/bx

 design tracker considering all aspects from sensor design over read-out and powering to support structures

Sensor R&D I

- R&D has made progress understanding radiation damage mechanisms
- Goal is to identify one single sensor type in planar technology for the outer region (best current guess p-MCz 2.5cm strips) and one more pixelated for the inner tracker.
- Oxygenated material has shown less V_{fd} increase after irradiation with charged hardons
- CCE studies showed encouraging signal after very high radiation fluence

Sensor R&D II

- Going for p-type bulk
 - no SCSI
 - electron read-out
 - needs strip isolation by p-stop/p-spray
 - simul. of optimal combination ongoing
 - minimum pitch 50µm (25µm for p⁺ in n)
 - larger Lorentz angle
 - thinner sensors?
- DC coupling
 - cheaper
 - needs current compensating ASICs (lower T or thinner sensors to reduce leakage current)
- Special routing for large sensors with short strips
 - double metal layers
 - bump bonding

L1 Trigger Challenge

- Keep 100kHz trigger rate without loss of physics information
- Confirmation of isolated high-p_T muons
- Reduce fake e/γ candidate by matching with inner track/vertex
- High-p_T hits close to/in jets helps identifying taus and bs

Low-p_T Discrimination

- Time constraints do not allow complete tracking
- Reduce data volume by applying p_T cuts
- Possible approaches:
 - cluster width low momentum tracks have larger cluster
 - closely spaced "trigger layers" difference in hit positions in both layers acts as discriminant for p_T ; larger lever

Sept. 4th, 2008

PSD08 A. Dierlamm, Universität Karlsruhe (TH)

11

Strawman Designs

- At the moment several strawman designs are proposed
- They are simulated, modified and discussed critically in the community
- Important aspect is to account for all requirements and find an optimal solution regarding performance

Strawman A

Strawman B

- 3 Superlayers, each with two layers of pixel doublets (12 hits), layers are same length in z as std TOB
 - 140 x 300 μm²
 - 300 x 300 μm²
 - 600 x 300 μm²
- 3 barrel pixel layers as in std CMS
- TEC and FPix as in std CMS
- Superlayers have 1158M channels, 121 m² (9M std)

Power delivery I

- Smaller feature size will result in smaller readout chip supply voltage (1.2V@0.13µm)
- Power per channel will decrease for next generation readout chips (2.7µW/ch. → 0.5µW/ch)
- Number of channels will increase, but have to be kept minimal to be compatible with tracking requirements (simulations!)
- Total readout power expected to be ~25-35kW (Strawman A)
 - in same range as present system so larger currents at front-ends required (lower voltage)

Power delivery II

- With higher radiation damage sensor power becomes important
 - thinner sensors
 - finer granularity should allow adequate noise performance
 - no changes to layout
 - material budget benefits, too
 - lower temperature
 - higher cooling power, i.e. thicker pipes
 - CO₂ cooling might help
- We need higher voltages to reduce currents and losses in cables
- Radical solutions required
 - serial powering or DC-DC conversion
 - neither are proven and many problems remain to be solved

New Powering Concepts

- Serial Powering possible, but
 - modules on different ground
 - AC coupled read-out
 - loss of complete chain?
- DC-DC conversion
 - studies started in CMS
 - find efficient, radiation hard, low-noise, 4T tolerant converter (not standard)
 - ferrits saturate and air coils radiate noise and/or are large, when not properly shielded
 - capacitor-based technoloy ?

CO₂ Cooling

- Could solve many of our problems
- Advantages over C_6F_{14}
 - High heat transfer coefficient \rightarrow smaller contacts (material budget)
 - High latent heat \rightarrow more heat load, no/smaller manifold pipes (powering)
 - Low viscosity \rightarrow pipes could be smaller (material budget)
 - Lighter and cheaper than C_6F_{14} (material budget)
 - Possible lower operation temperature (-50°C) (leakage current, rad. hardness)
- LHCb VELO uses CO₂, but choices made do not directly apply to CMS
- Cooling R&D in CMS has started
 - connection techniques
 - leak- and pressure testing
 - integration of cooling pipes
 - thermal expansion

^{- ..}

Conclusion

- Planning of a new tracker for very high luminosity at SLHC has started (and not too early)
- New designs are being investigated following an holistic appoach
- Material budget should be reduced, while more channels have to keep occupancy low, but without increasing power or degrading performance...
- Big challenges:
 - power delivery
 - trigger information for L1
- But don't forget radiation hard sensors and electronics ...
- The community has many experts with many years of experience. Together with the lessons learnd from the current tracker we are confident to meet the requirements.

Tracker web pages

http://cmsdoc.cern.ch/Tracker/Tracker2005/TKSLHC/index.html

Tracker Upgrade Wiki pages

https://twiki.cern.ch/twiki/bin/view/CMS/SLHCTrackerWikiHome

Sept. 4th, 2008

Backup

Sept. 4th, 2008

Power estimates

- Some extrapolations assuming 0.13µm CMOS
 - Pixels 58μW -> 35μW/pix
 - NB sensor leakage will be significant contribution
 - Outer Tracker: 3600 μW -> 700μW/chan
 - Front end 500µW (M Raymond studies)
 - Links 170µW (including 20% for control)
 - PT layers: 300µW/chan most uncertain
 - Front end 50µW (generous extrapolation from pixels)
 - Links 100µW (including 20% for control)
 - Digital logic 150µW (remaining from 300µW)
 - 100µm x 2.5mm double layer at R ≈ 25cm => 11kW
- More detailed studies needed
 - sensor contribution not yet carefully evaluated
 - internal power distribution will be a significant overhead

Radiography

Sept. 4th, 2008

R&D Projects

Proposal title	Contact	Date	Status
Letter of intent for Research and Development for CMS tracker in SLHC era	R Demina	14.9.06	Approved
Study of suitability of magnetic Czochralski silicon for the SLHC CMS strip tracker	P Luukka, J Härkönen, R Demina, L Spiegel	31.10.07	Approved
R&D on Novel Powering Schemes for the SLHC CMS Tracker	L Feld	3.10.07	Approved
Proposal for possible replacement of Inner Pixel Layers with aims for an SLHC upgrade	A Bean	31.10.07	Approved
R&D in preparation for an upgrade of CMS for the Super-LHC by UK groups WP1: Simulation studies/ WP2: Readout development/ WP3: Trigger developments	G Hall	31.10.07	Approved
The Versatile Link Common Project	F Vasey, J Troska	11.07	Received
3D detectors for inner pixel layers	D Bortoletto, S Kwan	12.07	Received
Proposal for US CMS Pixel Mechanics R&D at Purdue and Fermilab in FY08	D Bortoletto, S Kwan	12.07	Received
R&D for Thin Single-Sided Sensors with HPK	M Mannelli	7.2.08	Received
An R&D project to develop materials, technologies and simulations for silicon sensor modules at intermediate to large radii of a new CMS tracker for SLHC	F Hartmann, D Eckstein	6.3.08	Received
Development of pixel and micro-strip sensors on radiation tolerant substrates for the tracker upgrade at SLHC	M de Palma	9.4.08	Received
Power distribution studies	S Kwan	15.6.08	Received
Cooling R&D for the Upgraded Tracker	D Abbaneo	21.07.08	Received
Sept. 4th, 2008 PSD08 A. Dierlamm, Universität Karlsruhe (TH)			24

Peak Luminosity

Tracker Upgrade Layout Tool

- Flexible geometry definition using different module types
 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
- Output:
 - material budget
 - occupancy
 - bandwidth
 - costs

Dose at 2500fb⁻¹

F_{neutrons} at 2500fb⁻¹

Sept. 4th, 2008

