Photon counting microstrip detector for time resolved powder diffraction experiments

A. Bergamaschi, A. Cervellino, R. Dinapoli, F. Gozzo, B. Henrich, I. Johnson, P. Kraft, A. Mozzanica, B. Schmitt, X. Shi

Outline

➔Powder diffraction detector requirements

→ Description of the MYTHEN detector

➔ Detector performances

→ Example applications

Powder diffraction

Detector requirements

Time resolved experiments

→ Samples in a variable environment

- Phase changes in the sample
- Many cycles to check the reversibility of forms
- →Radiation sensitive samples
 - Organic samples degrade already after a few minutes of exposure
- →Pump and probe experiments
 - Gating and triggering to synchronize with stimulus

Powder diffraction detectors

Microstrip sYstem for Time rEsolved experimeNts

➔ Silicon microstrip sensor

- Position sensitive
 - 50 µm pitch
- 1280 independent channels
- Single photon counting readout
 - Large dynamic range
 - 24 bits
 - Poisson-like statistics

The wide angle diffractometer

→ Massive Parallel detection

- 120° angular coverage
- 30k independent channels
 - 0.03% bad
- 0.004° angular resolution
 - Usually limited by the sample size
- Time resolved powder diffraction is possible
 - Average acquisition time 1s
 - The acquisition can run 30000 faster than using the single channel crystal analyzer

Mythen Control System

- → Embedded Linux system
- Client-Server TCP/IP communication
- → Real time data taking
 - → Memory on board
- External gating and triggering
 - ➔ Interfacing to external hardware
 - → Pump and probe experiments

9

Readout time

→ Selectable counter dynamic range 4-24 bits

Frame rate

- ➔ The maximum frame rate is limited by the data transfer rate from the MCS to the PC
 - Configurable number of modules to increase the frame rate

Energy calibration

- ➔ A correspondence between threshold value and X-ray energy should be found
 - The threshold is normally set at half of the energy value
- The comparator threshold should correspond to the same energy for all channels
 - Energy resolution
 - Count uniformity

Comparator threshold linearity

- Shaper and amplifier settings depending on the application
 - Standard

•
$$\Phi_{\epsilon=90\%}$$
 = 1 MHz

Fast

•
$$E_{min}$$
 = 10 keV

- $\Phi_{\epsilon=90\%}$ = 3 MHz
- High gain
 - E_{min} = 5 keV
 - $\Phi_{\epsilon=90\%}$ = 300 kHz
- The comparator threshold is adjustable on a module base

Threshold dispersion

Trimming methods

Count uniformity

PAUL SCHERRER INSTITUT

Ritveld refinement

→ Structures can be determined from microstrip data

Crystallization of Co-rich alloys under microwave field

 \rightarrow Co-rich amorphous alloys for stable high temperature use as softmagnetic nanomaterials

→ Single-pulse microwave field application

→ One-step nanocrystallization.

PAUL SCHERRER INSTITUT

Conclusions

- → Calibration is essential for a proper operation of a large angular range detector
 - Energy calibration and trimming
 - Flat field correction
 - Angular calibration
- ➔ The quality of the data acquired with the new Mythen detector is comparable to that obtained with the analyzer detector
 - Fast and time resolved measurements are also possible!
 - Not only Powder diffraction: Time resolved, pump and probe, FEMTO, Imaging, SAXS
- → Mythen is a unique detector for 1-D X-ray applications
 - Large diffraction systems for synchrotrons
 - Smaller systems available also for lab diffractometers (Dectris AG)

Perspectives

- → Faster data taking
 - 10 kHz for the single module
 - 1 kHz for the 24 modules
- → Higher intensities
 - Higher count rate (time over threshold mode)
 - Integrating readout under test
- → Higher spatial resolution
 - = 25 μ m pitch sensors wire-bonded on both sides
- → Higher efficiency
 - Thick sensors
 - High Z-materials

→ Mythen3 ASIC...

Thanks

PAUL SCHERRER INSTITUT

The microstrip sensor

- Direct conversion of X-rays into electric charge
- →The spatial resolution is defined by the 50 µm strip pitch

Single Photon counting

→ High dynamic range

- Essentially noiseless →Low signal applications
- No saturation → High dynamic range

Smaller systems

→Faster frame rate→Up to 600 fps 1 module - 4 bits

Expected spectra

PAUL SCHERRER INSTITUT

Loss of efficiency at high rates

Reference for X-ray intensity given by a IC or by the detector background counts

Efficiency vs. rate

PAUL SCHERRER INSTITUT

Trimming with X-rays

PAUL SCHERRER INSTITUT

X-ray energy set at the threshold level

 Uniform illumination of the whole detector by scanning in front of an aperture

➔ Starting from the noise settings the trimbits are changed in order to equalize the number of counts for each module

- 45 minutes due to the detector movement (5 steps)
- The threshold dispersion is reduced of a factor 15
 - A further optimization of the DAC dynamic range is possible

FEMTO commissioning

- ➔ The gating is needed only to separate the single bunch from the halo
- The time resolution is defined by the length of the bunch
- ➔ Each channel can count maximum 1 photon/bunch
- Need for normalization between pumped and unpumped measurements

Sample in a variable enviroment

- → Structural solution of Bupivacaine (local anesthetic)
- →In-situ measurements in the furnace
- → Several cycles to check the reversibility of forms

Radiation damage

Example of an organic sample from and industrial user before and after irradiation

PAUL SCHERRER INSTITUT

