New micromegas detectors in the CAST experiment (CERN Axion Solar Telescope)

S. Aune² H. Brauninger³ T. Dafni¹ G. Fanourakis⁴ E. Ferrer Ribas² <u>J. Galán Lacarra</u>¹ T. Geralis⁴ I. Giomataris² F. Iguaz¹ I.G. Irastorza¹ K. Kousouris⁴ J. Morales¹ J.P. Mols⁴ T. Papaevangelou² M. Pivovaroff⁶ J. Ruz¹ R. Soufli⁶ A. Tomás Alquézar¹ K. Zachariadou⁴

> ¹Laboratorio de Física Nuclear y Astropartículas, Zaragoza, Spain ²DAPNIA, Centre d'etudes de Saclay, Gif sur Yvette CEDEX, France ³Max-Planck-Institut fur extraterrestrische Physic, Garching, Germany ⁴Institute of Nuclear Physics, NCSR Demokritos, Athens, Greece ⁵Institute fur Kernphysik, TU-Darmstadt, Darmstadt, Germany ⁶Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, USA

8th International Conference on Position Sensitive Detectors, 2008

・ロット (雪) (日) (日) (日)

Outline

The CAST Experiment

Experiment description and detection principle New micromegas detectors installed in CAST

Data analysis

Detectors efficiency and stability in the CAST experiment Background rejection

Detectors characterization

Bulk detector Microbulk detector (Full energy range characterization)

dFy

・ロット (雪) (日) (日) (日)

- The CAST Experiment

Experiment description and detection principle

Outline

The CAST Experiment

Experiment description and detection principle

New micromegas detectors installed in CAST

Data analysis

Detectors efficiency and stability in the CAST experiment Background rejection

Detectors characterization

Bulk detector Microbulk detector (Full energy range characterization)

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

- The CAST Experiment

Experiment description and detection principle

Introduction

- CAST uses an LHC prototype (dipole) superconducting magnet mounted on a rotating platform.
- The magnet can follow the Sun's center during sunset and sunrise during more than 1.5 hours.
- ► The magnet operates at a temperature around 1.8K.
- > Transverse magnetic field B = 9.0T inside the two magnet bores with L = 9.26m.
- 4 x-ray detectors : x-ray telescope (mirror optics and CCD) + 3 μM detectors.

- Phase I (Vacuum) : m_a < 0.02eV (2003-2004)</p>
- ▶ Phase II (He4) : *m*_a < 0.38*eV* (2005-2006)
- Phase II (He3) : m_a < 1.15eV (2008-2010?)</p>

The axion is a pseudo scalar Nambu-Goldstone boson that can be produced via Primakoff effect in stellar plasmas (e.g. Sun)

- The CAST Experiment

Experiment description and detection principle

The theoretical axion signal

- ► The axion solar flux was calculated by *G. Raffelt* using the well understood Standard Solar Model.
- The prediction places the main axion signal in the 2-7keV range.
- > The axion converts into an x-ray photon in presence of an intense magnetic field.
- The conversion probability decreases drastically with the q-transferred of the process.
- A buffer gas is needed (m_γ > 0) inside the *cold bore* to recover sensitivity in higher masses.

$$q = \frac{m_a^2 - m_\gamma^2}{2E_a}$$

dFy

Axion

- The axion comes out as the most elegant solution to the CP-violation problem (*Peccei-Quinn* 1977)
- The axion has low mass, is elec. neutral and weakly interacting with normal matter -> Dark matter candidate.

・ロット (雪) ・ (日) ・ (日)

- The CAST Experiment

Experiment description and detection principle

He3 Phase Upgrade

- New He3 recovery system and advanced He transfer.
- New μM vacuum line (detector pressure and flow control).
- 2 new sunset µM detectors replacing the old TPC detector.
- Added shielding for the sunrise detector.
- Improved shielding from the old TPC detector to the sunset side.

2000

- During data taking the gas is transfered to the cold bore in the middle of the tracking.
- > 2 daily pressure steps are measured.

The sensitivity of CAST depends strongly in the low background rate of the detectors.

- The CAST Experiment

New micromegas detectors installed in CAST

Outline

The CAST Experiment

Experiment description and detection principle New micromegas detectors installed in CAST

Data analysis

Detectors efficiency and stability in the CAST experiment Background rejection

Detectors characterization

Bulk detector Microbulk detector (Full energy range characterization)

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

- The CAST Experiment

New micromegas detectors installed in CAST

CAST

New micromegas detectors

- The latest generation of Micromegas detectors are in production for CAST.
- > Detectors are built with low radiation materials (Plexiglass, Kapton, ...)

Bulk

- ► 30µm inox mesh.
- 128µm pilars.
- 3-4 years of experience : well established technique.
- Reachable energy resolution (18% FWHM).
- Spatial uniformity and very robust.
- Limit on the energy resolution due to the thickness of the mesh.

Microbulk

- 5µm copper mesh.
- 30µm mesh holes.
- pilars are replaced by attached Kapton substrate.
- 1-2 years of experience : technology almost complete.
- Reachable energy resolution (< 13% FWHM).
- Fragility to sparks.

- The CAST Experiment

New micromegas detectors installed in CAST

CAST

Sunrise detector installation

- New vacuum line + detector pressure and flow control
- Designed a new lead + cadmium + cupper shielding for the new line.
- Polythylene shielding designed to optimize space and weight limitation.
- Inner shielding flooded with nitrogen (Radon contamination and water vapor reduction).

The CAST Experiment

New micromegas detectors installed in CAST

CAST Sunset detectors

- Replacement of the sunset TPC by 2 micromegas detectors (1 bulk + 1 microbulk).
- Great background reduction x15: Better events discrimination and new TPC shielding design.

dFy,

- Data analysis

Detectors efficiency and stability in the CAST experiment

Outline

The CAST Experiment

Experiment description and detection principle New micromegas detectors installed in CAST

Data analysis

Detectors efficiency and stability in the CAST experiment

Background rejection

Detectors characterization

Bulk detector Microbulk detector (Full energy range characterization)

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Data analysis

- Detectors efficiency and stability in the CAST experiment

Micromegas in CAST

Expected signal and detectors efficiency.

Sunrise detector efficiency loss contributions

- Intrinsic detector efficiency (Argon).
- ► 5 µm Aluminised-mylar drift window + 5% Strongback
- 4 μm polypropylene differential window
- 15 μm polypropylene cold window + 17.5%
 Strongback

Sunset detectors efficiency loss contributions

- Intrinsic detector efficiency (Argon).
- ► 5 µm Aluminised-mylar drift window + 5% Strongback
- 15 μm polypropylene cold window + 17.5% Strongback

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Data analysis

Detectors efficiency and stability in the CAST experiment

Micromegas in CAST

Sunrise detector stability

- New bulk detector (B4) was installed at the beginning of July.
- A Fe55 calibration is taken after tracking to check stability and apply rejection.

- Mesh voltage is reduced the 22nd of July.
- Background level evolves to a constant rate.

Data analysis

Detectors efficiency and stability in the CAST experiment

Micromegas in CAST

Sunrise detector gain stability

- Sunrise detector frontal calibration allows to study the gain distribution evolution.
- Gain is uniform through all the detection area.

Energy resolution (FWHM) 28.45% Gain standard desviation 1.4%

Data analysis

Detectors efficiency and stability in the CAST experiment

Micromegas in CAST

Sunset detectors stability

Microbulk detector

 Sunset detectors are calibrated from the back every 8 hours.

Bulk detector

Data analysis

Background rejection

Outline

The CAST Experiment

Experiment description and detection principle New micromegas detectors installed in CAST

Data analysis

Detectors efficiency and stability in the CAST experiment Background rejection

Detectors characterization

Bulk detector Microbulk detector (Full energy range characterization)

・ コット (雪) (小田) (コット 日)

Data analysis

Background rejection

Micromegas data analysis

Micromegas readout

- Mesh signal comes from ions produced in the amplification gap.
- Electron avalanches created in the amplification gap give a signal in the strips.
- The temporal mesh pulse and the spatial strips provide good information for event discrimination.

・ロット (雪) (日) (日)

Data analysis

Background rejection

Modified Standard Multivariate Method (K.Kousouris)

- A covariance matrix is built for (*E_o* = 5.96*keV*).
- The q-value is transformed to include energy dependence.
 q' = q_o · (^E/_{Eo})^a

$$f_q(q) = \frac{1}{2^{N/2}\Gamma(N/2)} q^{N/2-1}e^{-q/2}$$

Observables used for background discrimination

- Risetime-Width ratio
- Energy balance
 - Strips
 - Pulse Integral
 - Pulse Amplitude
- Cluster X-Y energy balance
- Cluster multiplicity balance

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

dFy

ъ

Cluster skew

Data analysis

Background rejection

Micromegas data analysis

Neural Networks method

- A Neural network is trained using background data.
- After training each cell identifies events with different parameters.
- A calibration run determines which cells are the x-ray photon sensitive ones.

The weights of each cell are the observables coming from *pulse* and *strips*.

$$w_{ik} = w_{ik} + lpha(t) \cdot h(d_{ig}, R(t)) \cdot (x_k - w_{ik})$$

・ロット (雪) (日) (日)

Data analysis

Background rejection

Micromegas data analysis

Background level

 Sunrise micromegas background level is reduced by a factor 3 for the new He3 Phase.

・ロット (雪) (日) (日)

dFy

э

Detectors characterization

Bulk detector

Outline

The CAST Experiment

Experiment description and detection principle New micromegas detectors installed in CAST

Data analysis

Detectors efficiency and stability in the CAST experiment Background rejection

Detectors characterization

Bulk detector Microbulk detector (Full energy range characterization)

イロト 不良 とくほ とくほう 二日

Detectors characterization

Bulk detector

Micromegas detectors characterization

Bulk detector (I)

Detector evolution with

- Pressure.
- Isobutane concentration.
- Drift voltage.
- Mesh voltage.

- Bulk detector was fully characterised in Saclay.
- Valuable data for finding the optimum setup and improve the discrimination analysis.

dFy

Detectors characterization

Bulk detector

Micromegas detectors characterisation

Bulk detector (II)

Detectors characterization

Microbulk detector (Full energy range characterization)

Outline

The CAST Experiment

Experiment description and detection principle New micromegas detectors installed in CAST

Data analysis

Detectors efficiency and stability in the CAST experiment Background rejection

Detectors characterization

Bulk detector Microbulk detector (Full energy range characterization)

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Detectors characterization

Microbulk detector (Full energy range characterization)

Micromegas detectors characterisation

Microbulk detector

- Last microbulk detector (M9) tested in CEA Saclay.
- Energy resolution for this measurement 13.99% FWHM.
- Good spatial resolution and cluster behaviour.

dFy

Detectors characterization

Microbulk detector (Full energy range characterization)

Micromegas detectors characterisation

Energy characterization in CAST

- An x-ray generator installed in the sunset side is used to crosscheck the alignment of the x-ray telescope.
- The sunset Microbulk detector is able to detect scattering from the walls.
- The x-ray energies cover the full energy range of the detector.
- Allows frontal characterization in situ.

dFy

Detectors characterization

Microbulk detector (Full energy range characterization)

Micromegas detectors characterisation

Calibration in energy

 Pulse parameters and cluster size are found to be slightly dependent with the x-ray energy.

・ ロ ト ・ 雪 ト ・ 目 ト ・

dFig

- Corrections to be included in discrimination analysis.
- Covariance matrix is now parametrizable with energy.

Detectors characterization

Microbulk detector (Full energy range characterization)

Conclusions and prospects

- Micromegas detectors have shown good performance and stability for the long data taking periods of the CAST experiment.
- Last micromegas detectors are robust to the mechanical vibrations during CAST magnet movement.
- Stable background rate : 3 μ M detectors with similar background levels.
- The micromegas detector will detect the first axions!
- New spare detectors for further testing and characterization.
- Background measurements will be carried out in *Canfranc Underground* Laboratory to complete the last detectors characterizations.
- More accurate energy measurements to be done in x-ray facilities.
- It is expected to improve even more the low background level of the new detectors by optimizing the setup and data analysis.
- The last characterizations will increase the reliability of the background data, and will reduce the effect of systematics.

dFU

(日) (日) (日) (日) (日) (日) (日)