

Position Sensitive Scintillator based Detector Improvements by means of an Integrated Front-End

Vicente Herrero-Bosch*, N. Ferrando-Jodar, J. Martinez-Perez, Ch.W. Lerche, J.M. Monzo-Ferrer, F. Mateo-Jimenez, R.J. Colom-Palero, R. Gadea-Girones, A. Sebastia-Cortes J.M. Benlloch-Baviera

* Presenting Author

1-5 September – University of Glasgow - Scotland

Continuous Scintillator Gamma Ray Detector

LSO : 42x42x10 mm

PMT : Hamamatsu H8500

Lower cost.

- □ Higher detector sensibility. ^[1]
- □ Better energy resolution. ^[2]
- DOI measurement without detector modifications. ^[3]
- Geometry and Coating of the crystal can be changed for optimization. ^[4]

Designed for PET applications

[1] P. Bruyndonckx, et al. "Performance Study of a PET Detector Module Based on a Continuous Scintillator", IEEE Trans. Nucl. Sci., (53), 2536, 2006.

[2] P. Bruyndonckx, et al. "Initial Characterization of a Nonpixelated Scintillator Detector in a PET Prototype Demonstrator", IEEE Trans. Nucl. Sci., (53), 2543, 2006.

[3] C. W. Lerche, et al. "Depth of gamma-ray interaction within continuous crystals from the width of its scintillation light-distribution" *IEEE Trans. Nucl. Sci.*, (52), 560, 2005.

[4] C. W. Lerche, et al. "Dependency of Energy, Position and Depth of Interaction on Scintillation Crystal Coating and Geometry", IEEE Trans. Nucl. Sci., 55, (2008) 1344.

Experimental Setup

Analog Front-End Electronics

- □ Individual Anode Gain Adjustment for Detector Equalization.
- □ Possible use of other Photomultipliers (SiPMs).
- □ Reduce Front-End delay.
- □ Depth of Interaction Measurement.

PESIC

- □ AMS 0.35um Technology.
- □ Low Power consumption (17 mA 56 mW).
- □ 4 bits Preamplifier Gain Factor.
- Simplified Implementation of DOI Algorithm

[5] V.Herrero, et al. "PESIC: An Integrated Front-End for PET applications", IEEE Trans. Nucl. Sci., 55, (2008) 27

Equalization Method

0.041	0.075	0.097	0.075	0.041
0.075	0.197	0.326	0.197	0.075
0.097	0.326	0.645	0.326	0.097
0.075	0.197	0.326	0.197	0.075
0.041	0.075	0.097	0.075	0.041

Theoretical Model Scintillation Light distribution on detector surface

$$L = \frac{effd}{\sqrt{((x - x_0)^2 + (y_0 - y)^2 + effd^2)}^3}$$

[6] N. Ferrando, et al. "Cellular Automaton-Based Position Sensitive Detector Equalization", POSTER SESSION 1 (15:00)

Spatial Resolution Measurements before Equalization

DETECTOR CORNER AREA

DETECTOR CENTER AREA

36 Points Sweep Over Detector Area

Without Equalization

With Equalization

IMPROVEMENT??

Effect of Equalization on Spatial Resolution

Mean Combined Resolution = 3.38 mm Standard Deviation = 0.35 mm

Mean Combined Resolution = 3.37 mm Standard Deviation = 0.29 mm

With Equalization

More Homogeneous Response Over Area

4 bits \rightarrow LSB ~ 6.25% STD_{eq} ~ 8.6 %

Position Sensitive Scintillator Based Detector Improvements by means of an Integrated Front-end

Effect of Equalization on Energy Measurements (I)

With Equalization

Mean Photopeak = 990 Standard Deviation = 62

Mean Photopeak = 1000 Standard Deviation = 19

More Homogeneous Response Over Area

Effect of Equalization on Energy Measurements (II)

$$R_{PMT}^2 = \frac{\sigma_{PMT}^2 \cdot (2.35)^2}{E_{PMT}^2} = \frac{5,56}{N\eta\alpha} \frac{\delta}{\delta - 1} \quad [6]$$

m

$$\sigma_{PMT}^2 = \sum_{i=0}^{\infty} \sigma_i^2 = (N\eta\alpha) \sum_{i=0}^{\infty} \delta_i^{2n} \frac{\delta_i}{\delta_i - 1}$$
$$\delta \sim \begin{bmatrix} 2 & 5 & 3 \end{bmatrix} \qquad \delta \downarrow \rightarrow \sigma^{\uparrow}$$

Mean Energy Resolution = 23 % Standard Deviation = 2

2

With Equalization

Mean Energy Resolution = 23.7 % Standard Deviation = 3.1

Equalization Process

m

$$\overline{\sigma_{PMT}^2} = (N\eta\alpha) \sum_{i=0} A_i^2 \delta_i^{2n} \frac{\delta_i}{\delta_i - 1}$$
$$A_0 \delta_0^n = A_1 \delta_1^n = \dots = A_m \delta_m^n$$
$$E_{PMT} = \overline{E_{PMT}}$$

m

More Preamp Gain to anodes with higher σ

Energy Resolution Degraded

Depth of Interaction Measurements

[4] C. W. Lerche, et al. "Dependency of Energy, Position and Depth of Interaction on Scintillation Crystal Coating and Geometry", IEEE Trans. Nucl. Sci., 55, (2008) 1344.

- DOI can be estimated but ...
- Poor resolution for 10 mm thick scintillator
 - Simplified version of the original algorithm
 - More inputs in DOI block increase resolution (only 8 are taken)
 - Resolution bellow 3 mm has been reported ^[4]

Thank you for your attention

