A new design of MPGD: Micro-Mesh Micro Pixel Chamber (M³-PIC)

A.Ochi*, Y.Homma, T.Dohmae, H.Kanoh, T.Keika, S.Kobayashi, Y.Kojima, S.Matsuda, K.Moriya, A.Tanabe, K.Yoshida Kobe University

PSD8 Glasgow 1st September 2008

Introduction

D

- > Introduction to μ -PIC
- Design of new M³-PIC
- > Advantages using micro mesh

Introduction to μ -PIC

- + M³-PIC is based on μ -PIC
 - μ-PIC : micro pixel gas chamber
 - Large area with PCB tech.
 - pitch :400µm
 - high gas gain
 - small discharge damage

	MSGC	μ- PIC
Maximum gain	1700(with capillary)	15000
Stable Gain	1000	7000
Long time		>30 days
Area	10×10cm ²	30×30cm ²
Pitch	200µm	400µm (300µm possible)
uniformity	~35%	4%

- Invented by A.Ochi and T.Tanimori (NIMA 471 (2001) 264)
- Application: X-ray imaging, Gamma camera, Medical RI tracing, etc.

Introduction to μ -PIC (cont'd)

• Applications --- Micro TPC \rightarrow Gamma ray camera

Design of M³-PIC

Advantages using micro mesh

- Higher gas gain will be attained safely (10⁴⁻⁵)
 - High electric field is formed larger area around the anode
 - Without increase of e-field near cathode edge
 - Electron emission from cathode edge is reduced
 - Streamer from anode is quenched
- Reduction of positive ion backflow
 - ▶ μ-PIC: ~30%
 - ▶ M³-PIC: < 1%

Setup and operation tests

Setup

D

- Gas gain measurements
- Ion backflow measurements

Setup

Micro mesh mounted on μ -PIC by hand. Size of μ -PIC = 3cm x 3cm.

Micro scope pictures for same place (different focus point)

PSD8 Glasgow Ist September 2008

Gas gain measurements

Gain dependence of drift field

- Higher drift field
 - Lower electron collection efficiency on anode
 - \rightarrow Gain decrease
 - \rightarrow Energy resolution worse
 - → No escape peak found in 2kV/cm
- Maximum gain
 - $100V/cm < E_d < 500V/cm = 400$
 - E_d below 100V/cm
 - \rightarrow lon-electron recombination $\frac{1}{200}$

Electron drifts toward anode (simulation)

 Electrons are absorbed in the mesh or cathodes when electric field in drift region is higer.

Gain dependence on Vm and Va

E_drift = 300V/cm

D

Maximum gain : 5 x 10⁴

Ion backflow (IBF)

- Ion backflow: The fraction of total avalanche-generated ions reaching to drift region.
- Serious problem for TPC readout

Setup for ion backflow measurements

- Pico-ammeter is inserted in Drift and Anode line
- IBF = (I_drift/I_anode)
- Wireless data taking for keeping insulation

PSD8 Glasgow I st September 2008

IBF of M³-PIC

 IBF dependence on drift field and mesh thickness

- ➤ Gas: Ar 90% + C₂H₆ 10%
- \succ Gain = 10⁴ for these tests
- Liner dependence of IBF on drift field
- Small IBF for thicker mesh
- Optimum point of mesh voltage

IBF dependence on mesh voltage

Minimum IBF = 0.5%

PSD8 Glasgow I st September 2008

Summary

New MPGD design: M³-PIC was developed

- Combined with μ -PIC and micro mesh
- Ideal electrical fields are formed around anodes for gas avalanche
- Prototype was manufactured and tested
- Maximum gain of 5×10^4 has been attained at present
 - \blacktriangleright A few time larger than the gain of simple $\mu\text{-PIC}$
- Minimum IBF of 0.5% has been attained at present

Future Prospects

- Optimization of structure parameters (mesh gap, mesh thickness ... etc.) and operation parameters (HV, gas etc.)
- Combination with existence large area μ-PIC
 - Testing imaging and tracking capabilities
 - Long term operation test