

Image-transfer properties of a microCT system based on a flat panel detector

Arnulfo Martínez-Dávalos Instituto de Física, UNAM arnulfo@fisica.unam.mx

Aims

- To develop radiological imaging systems for small rodents using state of the art technologies
- To integrate different imaging techniques in order to provide both anatomical and functional information
- To provide advanced training in all related areas (radiation detection, nuclear techniques, imaging, preclinical studies, etc.)
- To collaborate in basic biomedical research using *in vivo* molecular imaging techniques

Why study mice?

- Biological model par excellence
- Genetically modified strains
- Animal models of neoplasic or neurological diseases
- Non invasive *in-vivo* studies
 - Neurochemistry
 - Disease development
- Longitudinal studies

The dose problem in microCT

- In-vivo imaging allows longitudinal studies, but ...
 - only meaningful if the subject is not altered!
- Excessive dose can alter physiological functions:
 - 200 mGy *in-vivo* elevates gene expression level [Amundson et al. 2001]
 - 20-50 mGy *in-vitro* induces stress-response gene expression [Fornace et al. 2002]

Oxford Instruments X-ray tubes

	Ultrabright	Apogee	
		1-3	
Target	W	W / Mo	
Current interval (mA)	0.1 - 2	0.1 - 1	
Voltage (kV)	10 - 90	20 - 50	
Focal spot (µm)	13 - 40	35	
Beam angular aperture	33°	22°	

Flat panel detector

Rad-icon Shad-o-Snap 4k 8 CMOS photodiode panels
 (Kodak Lanex fine, ~80 µm thickness) ♦ 96.1 mm h × 98.6 mm w the set of the ✤ 4000:1 dynamic range * USB data interface ✤ 540 ms readout period

Basic setup

Detector

X-ray tube

Olinca Galván, MSc Thesis, Graduate Program in Medical Physics, UNAM, 2008

mCT control panel

LabVIEW v8.5, modular VI library.

Methods

FPN (flat field correction) MTF : Slanted edge technique * NPS : 2D FT of relative noise distribution \bullet DQE : MTF² / (X Φ_x NPS) CT rec. : Feldkamp

SIBI

X-ray spectra

$\Phi(E,V)=a(E)kV^3+b(E)kV^2+c(E)kV+d(E)$

- Spectra
- Angular distributions
- Backscatter factors
- Output factors
- ✤ Half-value layers
- Parameterization

Fixed Pattern Noise

x : dead pixels
 aprox. 0.1%
 o : outliers
 aprox. 1.0%

Flat field correction

Non-uniform response

Corrected

Oxford Instruments Apogee W, 1 mm Al, 1 mAs

Noise

Oxford Instruments Apogee W, 1 mm Al, 1 mAs

Presampling MTF

Spatial resolution at 10% MTF ~ 10 lp/mm

W 40 kVp, 0.5 mm Al, 30 mR

 $\mathsf{DQE} = \mathsf{MTF}^2 / (\mathsf{X} \ \Phi_{\mathsf{x}} \ \mathsf{NPS})$

Dose measurements & simulations

Carla Montaño, MSc thesis, Graduate Program in Medical Physics, UNAM, 2007

Śibi

Orlando Soberanis, MSc Thesis, Graduate Program in Medical Physics, UNAM, 2008

Mexican Iguana

W target, 1.0 mm Al, 30 kVp, 0.5 mAs

Body length ~ 4 cm

First mCT of a mouse (ex-vivo)

Śibi

CT reconstruction, axial slices

W 50 kVp, 0.5 mAs, 1 mm Al, 360° orbit, 1° steps Feldkamp, Hann filter, 0.7 cutoff frequency

Conclusions

- We have built and characterized a benchtop microCT prototype
- Detector performance:
 - Excellent spatial resolution (~10 lp/mm @ 10% MTF)
 - Good noise performance
 - Very good DQE (40-50% at low spatial frequencies)
- Successful image acquisitions and tomographic reconstructions

To do:

- New detector, faster data transfer
- Use of contrast media and/or dual energy techniques
- Integration of microCT with microPET

Participants

Źibi

-

Human vs. mouse

Human – 70 kg CT

- ✤ 100-120 kVp
- Spatial resolution ~0.4 mm
- ✤ Ring geometry
- ✤ Dose ~2-20 mGy

PET

- Spatial resolution 2-3 mm
- ✤ Activity ~ 10-15 mCi
- Sensitivity ~ 2-4%

Mouse – 30 g

microCT

- ✤ 30-80 kVp
- ✤ Spatial resolution ~50 µm
- ✤ Flat panel detectors
- ✤ Dose ~30-300 mGy

microPET

- Spatial resolution 1-2 mm
- Activity ~ 0.5 mCi
- ✤ Sensitivity ~ 3.5%

Reconstruction parameters

	Ramp	Shepp-Logan	Cosine	Hann	Hamming
SNR	24.7	22.9	25.8	25.2	26.7
CNR	3.5	3.9	4.8	5.2	5.1

