Active Pixel Sensors in Nuclear Medicine Imaging RJ Ott, N Evans, P Evans, J Osmond, A Clark, R Turchetta Physics Department Institute of Cancer Research and Royal Marsden Hospital, Brunel University and Rutherford Appleton **Laboratories**

What is Nuclear Medicine

- The use of radioactive tracers to imaging the function of living tissues
- Whole body imaging performed using gamma cameras and PET cameras with spatial resolutions of >5mm
- High resolution (<1mm) imaging desirable for studying the detail of tracer uptake

What is an active pixel sensor (APS)

- A silicon wafer based sensor similar to a CCD but with the potential for intelligent processing in each pixel
- APSs are based on mainstream CMOS technology with low-power, high-speed, cost-effectiveness, flexibility and high levels of on-chip integration.
- The sensors used here were developed and funded under the MI-3 research consortium

The MI-3 research consortium

- MI-3 stands for Multidimensional Integrated Intelligent Imaging
- MI-3 is a four-year £4.5m Basic Technology project funded by RCUK to advance the capabilities and application of APSs for a raft of scientific and technological endeavours

M 3 Giving Science a New Image

Parameters of APS used here

	Number of pixels per side	Pixel size (µm)	System noise (e)	Frame rates (fps)
Startracker	525	25 x 25	100-120	10
OPIC	64 x 72	40 x 40	>100	>3700
Vanilla	520	25 x 25	~25	1-100

High-resolution gamma camera wish-list

- Pixel sizes of 100 microns or more
- Coupled to thin inorganic phosphor such as CsI(TI) to allow detection of 140keV photons
- Low noise (few electrons) needed
- >100 cm² sensitive area
- Kcps photon counting capacity
- On-chip pulse and cluster analysis for signal selection and noise reduction

High-resolution gamma camera (what we have so far)

- Pixel sizes of 25-40 microns
- Coupled to 2mm thick CsI(TI) phosphor segmented into 400 micron elements
- 25-120 electrons noise
- ~2 cm² sensitive area
- A few 10s of cps photon counting capacity
- Off chip data analysis

The Startracker imaging setup

APS coupled to pixelated CsI(TI) phosphor via optical fibre stud

Intrinsic spatial resolution measured with Startracker

Spatial resolution ~80 microns FWHM

Startracker system resolution measurements

5mm wide slot

profile across slot

System resolution is about 450 microns

Conclusions from Startracker studies

- Pixel sizes are smaller than needed reducing signal to noise by splitting signal
- Overall background is too high requiring noise removal
- Background is dominated by 'fixed pattern noise' which can be 'subtracted.
- Thermal noise reduction makes only a small contribution for this sensor

Noise studies with OPIC

Single frame illumination with laser pointer

Template produced from pixel variance analysis of multiple frames

Fixed pattern noise

Statistical noise

Conclusions from noise studies with OPIC

- Pixel noise is dominated by 'fixed pattern noise'
- By studying the variance of pixel noise in multiple frames it is possible to differentiate between statistical noise and fixed pattern noise.
- A simple method of noise 'subtraction' can be used to remove fixed pattern noise from pixels

Noise images taken with Vanilla

Total noise fixed pattern statistical noise noise

Data from dark frame images

Images taken with Vanilla

2mm wide illuminated hole

horizontal profile

300

400

500

600

_ 🗆 ×

Multi-frame acquisitions after fixed pattern noise removal

Images taken with Vanilla

5mm wide slot 1mm holes on 2mm centres Multi-frame acquisitions after fixed pattern noise removal

Images taken with Vanilla using thin non-segmented CsI(TI)

Multi-frame acquisitions after fixed pattern noise removal

3mm holes

2mm wide hole

6mm wide hole

So where are we at?

- Tc-99m gamma rays produce ~7000 optical photons in CsI(TI)
- Number of optical photons reaching sensor is probably ~600-800
- Area of sensor sensing each event ~400 µm (size of phosphor element)
- With 40 µm pixels the signal is spread over 100 pixels (25 micron pixels are worse)
- Hence even for 100% QE the signal per pixel will often be less than the noise
- Use of thin, non segmented phosphor might help but the detection efficiency is much lower
- Larger area sensor with larger pixels (>100 µm) and lower noise would work

Conclusions

- 1. APS Devices with the right parameters could make a contribution to high resolution Nuclear Medicine Imaging
- 2. Noise levels are still a problem for this application
- 3. Fixed pattern noise dominates over thermal noise making noise removal easier
- 4. On-chip intelligence to filter out noise would be useful
- 5. Larger area devices with larger pixels essential.

Future

Large area sensor is now being released by RAL

Sensitive area of 56mm x 56mm in area with 1400 x 1400 pixels

Pixel sizes 40µm

Pixel noise levels ~**e

Acknowledgements

We would like to thank

the electronics group at RAL for the design and testing of these sensors and support of the project.

the MI-3 consortium for scientific discussion and input

RCUK for funding the work through the Basic Technology research grant GR/S85733/01