A Biological Position Sensitive Detector: the Retina

Alan Litke SCIPP/UCSC 2 September 2008

- 1. Architecture
- 2. Measurement of functional properties
- 3. Functional Organization
- 4. What can be done when the retina malfunctions?: retinal prosthesis studies
- 5. Fabrication: retinal development studies (first steps)
- 6. Conclusions and Outlook

Collaborators

- <u>SCIPP/UC Santa Cruz:</u>
- A. Grillo, M. Grivich, S. Kachiguine, D. Petrusca, A. Sher
- •<u>AGH U. of Science and Technology, Krakow (I C design):</u> W. Dabrowski, P. Hottowy (now at UC Santa Cruz)
- U. Glasgow (electrode array fabrication):
 - D. Gunning, K. Mathieson
- The Salk Institute (neurobiology):
 - E. J. Chichilnisky, G. Field, J. Gauthier, M. Greschner, C. Sekirnjak, J. Shlens

The Eye

The Retina

 $\uparrow \uparrow \uparrow \uparrow \\ light$

The Retina: A Biological Pixel Detector

- thickness: $\sim 300 \ \mu m$
- active area: 10 cm²
- number of pixels: 10⁸
- number of output channels: 10⁶
- compression factor (# input channels/# output channels): 100:1
- output signal width: ~1ms
- output format: visual information encoded by pattern of digital signals ("spikes") on multiple parallel channels
- spatial resolution: down to $2 \,\mu m$
- 3D (depth perception): stereoscopic vision
- radiation hardness: non-rad-hard
- technology: mature, reliable, and in wide-spread use

The Retina

photoreceptors

inner nuclear layer (horizontal, bipolar, amacrine cell bodies)

ganglion cell layer

nerve fiber layer

outer plexiform layer

inner plexiform layer

 $\uparrow \uparrow \uparrow \uparrow \uparrow \\ light$

<u>The Retina:</u> pixel detector layout

center-to-center spacing = $2.5 \ \mu m$

<u>Measurement of Functional Properties</u> (based on work by Meister, Pine and Baylor)

Computer Display

Electrode Array Geometries

(Electrode diameters = 5 μ m; area and electrode spacing given below.)

<u>Section of</u> 512-electrode Array (32x16)

Electrode diameter = $5 \mu m$

Litke et al., IEEE Trans. Nucl. Sci. (2004) 1434

Section of 512-electrode "Neuroboard"

<u>Spikes on electrodes</u> \Rightarrow <u>spikes from identified neurons</u>

Neuron Identification

(signals on electrodes \Rightarrow spikes from identified neurons)_

7x26=182 measurements

- Principal Components Analysis Find ~5 most significant variables that are linear combinations of the 182 measurements
- Multidimensional Clustering
 - \Rightarrow Identified Neurons

Electrophysiological Imaging

measure the response properties of identified neurons

⇒ white noise analysis: use time sequence of random checkerboard images

t=50 ms

t=58 ms

⇒ measure the "spike-triggered average" (sta) response for each neuron

Spike-triggered Average

Spike-triggered average image at time of maximum absolute intensity

900 µm

Monkey Retinal Ganglion Cell

Spike-triggered average image at time of maximum absolute intensity

900 μm

Some first results with monkey retina

Light-sensitive regions ("receptive fields") for 338 identified neurons

3.2 mm

Spatial/temporal response properties of individual neurons ("spike-triggered average")

ON-parasol

OFF-parasol

OFF-midget

ON-midget

3.2 mm

Five identified monkey RGC classes (already well-known), but this is just the tip of the iceberg.

From anatomical studies, it is estimated that there are at least 22 distinct types of monkey RGCs.

Yamada, Bordt, and Marshak, Visual Neuroscience 22 (2005) 383.

Search for "missing" primate functional cell types

- Anatomical studies indicate cells have large area ("wide-field")
- combined with the "mosaic principle" (cells of a given type tile the visual field)

 \Rightarrow missing cell types have low spatial density – they make up only a small fraction (few %) of the primate RGCs

Search Strategy

➤ use large area/high density arrays to look for a significant number of cells with similar functional properties in a single preparation (statistics!)

> confirm these are ganglion cells with EIs

- ➤ confirm cells form a mosaic
- > verify in several preparations

D. Petrusca et al., J. Neuroscience (2007)

"polyaxonal spiking amacrine"

Linear/nonlinear summation of the visual image over the RF of the RGC

<u>Linear summation</u> over RF ("X-like cell")

Response mainly at fundamental freq. F1; (dependent on spatial phase; "null position")

Contrast reversing gratings at temporal freq. F1

Nonlinear summation over RF ("Y-like cell")

Response mainly at second harmonic F2 (freq. doubling);

Properties of OFF upsilon primate RGCs

- large receptive field RF diameter ~3 times OFF parasol RF
- rapid and highly transient response to light
- highly nonlinear spatial summation (Y-like RGC)

Speculation: upsilon cells play a role in motion perception - detection of moving objects or moving textured patterns

Retinal Prosthesis

for diseases that cause blindness due to photoreceptor degeneration

• Reitinitis pigmentosa (1 in 3500 births in US)

• Age-related macular degeneration (1.75M [2000] \rightarrow 3M [2020] in US)

Retinal Prosthesis in Blind Subject

Implanted 4 x 4 electrode array; electrode diameter = 520 μ m, electrode spacing = 720 μ m

Humayan et al., Vision Research 43 (2003) 2573.

Yanai et al., Am J Opthalmology 143 (2007) 820. (3 subjects)

Retinal Prosthesis Studies

Some issues to be addressed to guide the design of a retinal prosthetic device better able to stimulate RGC activity for more normal visual functioning:

Stimulate RGC activity:

- with a high density array of small diameter electrodes
- in primate retina
- independently in individual RGCs
- in a general spatiotemporal pattern to recreate the activity pattern expected for the visual stimulus

Retinal Prosthesis Studies I

multielectrode electrical stimulation combined with multielectrode recording; <u>Use small diameter electrodes with high spatial density</u>

61-electrode array; electrode diameter = 5-25 μ m; electrode spacing = 60 μ m; rat retina

stimulation pulse supplied by Platchip C. Sekirnjak et al., J. Neurophysiol. (2006)

multiple site stimulation

C. Sekirnjak et al., J. Neurophysiology **95** (2006) 3311

<u>Retinal Prosthesis Studies II</u> (primate retina)

Low stimulation threshold levels (~0.05 mC/cm²; factor of 3-20 below safety limit)

Parasol cell identified from response to white noise stimulus

C. Sekirnjak et al., J. Neuroscience **28** (2008) 4446

Stimulation latency and temporal precision

Individual primate parasol RGCs can be electrically stimulated:

- at low (safe) threshold levels
- with temporal precision
- with little activation of other parasol cells

In these examples, the stimulating electrode was also the recording electrode for the cell outlined in bold

Retinal Prosthesis Studies III

Overcome limitations of original stimulation system:

- huge electrical artifacts; difficult to record from stimulating electrode
- cannot stimulate with arbitrary spatiotemporal patterns

 \Rightarrow new stimulation chip

"Stimchip"

- 64 channels
- ability to generate arbitrary, independent waveforms on each channel, under software control
- stimulation in current or voltage mode
- artifact suppression for signal recording

P. Hottowy et al., Analog ICs and Sig. Processing 55 (2008) 239

Artifact suppression: stimulate and record on same electrode (mouse RGCs)

and 6 neighboring electrodes

P. Hottowy et al., Proceedings, MEA Meeting 2008 (Reutlingen, Germany)

<u>Patterned stimulation</u> (with 2 independently stimulated mouse RGCs)

P. Hottowy et al., Proceedings, MEA Meeting 2008 (Reutlingen, Germany)

Retinal Development

(with D. Feldheim, UCSC and M. Feller, UC Berkeley)

- How does the retina wire itself up?
- How are ~two dozen independent RGC mosaics formed?
- How are the orientations of the direction-selective RGCs formed?

Use Mouse Retina due to the genetic possibilities

- Measure RGC functional properties and mosaics of wildtype mouse retina
- Compare with the corresponding retinal properties of
 - > genetically modified mice
 - ➤ mice deprived of visual experience and/or spontaneous correlated neural activity ("retinal waves")
- to relate function with structure, match anatomical image with EI
- Develop high density electrode arrays (to better identify and image the small-sized mouse RGCs)

519-electrode array with 30 µm spacing

(Developed by K. Mathieson and D. Gunning, U. Glasgow)

Mouse On-Off Direction Selective Ganglion Cells

Fig. 1

J. Elstrott et al., Neuron **58** (2008) 499

Mosaic and functional properties of mouse RGC types

A. Sher et al., FASEB conference on Retinal Neurobiology and Visual Processing (2008)

<u>Mosaic of transient-OFF-α RGCs in mouse retina</u> is genetically labeled with green fluorescent protein (GFP)

A. Huberman et al., Neuron **59** (2008) 425

Conclusions

We have developed a multielectrode array system for the large scale recording and stimulation of retinal ganglion cell activity
For the first time, it has become possible to study image processing and encoding by the retina in terms of the correlated spiking activity of hundreds of neurons

•There are at least two dozen functional types of mammalian retinal ganglion cells, each of which appears to tile the visual field, and each of which appears to send a separate "image" to the brain

•A new functional type of primate retinal ganglion cell has been found with large receptive field, highly transient light response, and nonlinear spatial summation (Y-like)

•Retinal prosthesis studies indicate that a dense array of small diameter electrodes can be used to electrically stimulate retinal ganglion cells in a spatiotemporal pattern

Outlook

•We have a variety of tools in hand (electrode arrays, ICs for neural activity recording and stimulation, data acquisition systems, software) to study how populations of neurons in a variety of neural systems process and encode information. The fun has just begun!

•Additional tools are under development:

•Bed-of-nails arrays to study brain tissue slices; see Debbie Gunning's talk in this session

•512-electrode stimulation and recording system to study cortical network dynamics in brain tissue slices; establish two-way communication with a living neural system (in collaboration with J. Beggs, Indiana U. and W. Dabrowski, Krakow)

•Wireless in vivo recording system; study brain activity in awake, naturallybehaving animals (in collaboration with M. Meister, Harvard U., and W. Dabrowski, Krakow)

• Much work remains to be done on retinal processing, retinal prosthesis and retinal development

Rat cultured cortical slice on 512-electrode array

portable, battery-operated, wireless system to record brain activity on multiple electrodes; can be carried by a rat or a flying barn owl

