Medical Applications of Position Sensitive Detectors

Alex Elliott Department of Clinical Physics University of Glasgow

Applications

- Computed Radiology
- Digital Radiology
- Mammography
- Computed Tomography
- Planar Nuclear Medicine/ Single Photon Emission Computed Tomography
- Positron Emission Tomography
- Megavoltage Imaging

History of medical imaging

- X-rays Roentgen, 1895
- Nuclear medicine Cassen, 1951
- Ultrasound Donald, 1962
- SPECT Kuhl, Edwards, 1963
- PET Ter-Pogossian, 1972
- MR Lauterbur, Mansfield, Hutchison, 1972
- CT Hounsfield, 1973

Imaging investigations in England 1995-2007

					Radio-		
Year	X-Rays	СТ	MRI	Ultrasound	isotopes	Fluoro-scopy	Total
1995-96	18,503,844		347,817	4,031,292	467,916	1,077,914	
1996-97	19,167,629	1,056,365	394,940	4,456,816	506,412	1,232,795	26,814,957
1997-98	19,474,590	1,172,656	473,074	4,790,532	722,096	1,179,979	27,812,927
1998-99	19,876,933	1,254,474	522,138	5,018,434	699,654	1,244,632	28,616,265
1999-00	19,967,296	1,359,852	585,797	5,255,330	727,255	1,256,965	29,152,499
2000-01	19,913,022	1,488,752	632,594	5,382,582	539,141	1,253,847	29,209,938
2001-02	19,806,876	1,625,304	705,706	5,571,979	537,653	1,222,296	29,469,814
2002-03	19,512,924	1,767,791	786,646	5,635,358	551,423	1,295,639	29,549,781
2003-04	20,056,669	1,992,826	857,550	5,937,383	582,742	1,221,102	30,648,272
2004-05	19,818,330	2,141,652	944,935	6,029,104	560,337	1,190,487	30,684,845
2005-06	20,585,678	2,481,571	1,118,487	6,469,396	623,532	1,209,029	32,487,693
2006-07	21,011,234	2,728,119	1,257,972	6,715,486	588,638	1,249,161	

Preliminary US Results (2006)

	Number procedures	%	Collective dose (Person-Sv)	%	Per capita (mSv)
Radiography	276 million	52	182,000	19	0.6
Interventional	13 million	2	112,000	12	0.4
СТ	67 million	12	440,000	46	1.45
Mammography	34 million	б	3,300	< 0.5	0.01
Dental	125 million	23	2,300	<0.5	0.01
Nuclear Medicine	19 million	4	220,000	23	0.7
Radiotherapy	1 million pts	NA	NA		

Detector qualities

- High absorption efficiency
- High conversion efficiency
- Low 'dark current'
- Rapid decay time
- Good energy resolution
- Good spatial resolution
- Rapid processing

Radiation Damage

A number of cases of significant radiation damage have been reported as a result of interventional radiology and cardiology procedures

Appearance after 6-8 weeks and after 18-21 months

Planar X-ray (Computed/Digital Radiology)

- Relies on contrast from electron density
- Photon energy 60-140keV
- Radiation dose per view
 - limits number of images
- Spatial resolution ~ 0.1mm
- Temporal resolution ~ 10ms

Detector Technology

X-ray absorption:

- Csl converts X-ray to light
- Csl needle structure avoids light scatter
- photo diodes convert light to charges
- charges stored in capacitors

Image readout:

- multiplexed high speed readout
- ultra low noise electronics
- no need for water cooling
- fast transmission to operating console

Detector Technology

	Trixell	GE	Hologic	Canon
Туре	Amorphous silicon	Amorphous silicon	Amorphous selenium	Amorphous silicon
Active Size [cm]	43 x 43	41 x 41	35 x 43	43 x 43
Pixels	9 million	4 million	7.86 million	7.2 million
Pixel pitch [µm]	143 (3.5 lp/mm)	200 (2.5 lp/mm)	139 (3.6 lp/mm)	160 (3.1 lp/mm)
Gray scale	16384 (14 bit)	16384 (14 bit)	4096 (12 bit)	4096 (12 bit)
Tomography	yes	no	no	no
Dose range	400 – 800 speed	400 speed	200 – 400 speed	200 speed
Active cooling	no	yes	no	no

Mammography

- Photon energy 25-40keV
- High resolution
- High sensitivity

Mammography Detector

- Area
- Pixel pitch
- Dynamic range
- Image size

• Scintillator

31 x 24 cm
100µm
14 bits
3062 x 2394 pixels
(14MB)
optimised CsI

• Closed loop liquid cooling

Mammography comparison

Better contrast in digital : enables visualisation of the whole lesion

CT

- Relies on contrast from electron density
- Photon energy 60-140keV
- Radiation dose per view
- Spatial resolution ~ 0.1mm
- Temporal resolution ~ 0.5s

CT data flow

- 16-slice system
- 10K measurement channels
- 10M measured values per rotation
- Gb/s data rates

Decay time and afterglow

Scintillator Properties

	CsI	GOS	$CdWO_4$
Density (g.cm ⁻³)	4.51	7.34	7.9
Relative light output	100	77	31
Decay time (µs)	0.98	2.5	8.9
Afterglow @ 30ms (ppm)	100	32	160
Drift	2%	0.2%	0.4%
(120keV, 15000mAs, 60s)			

Doped GOS

- Supersaturated solution heated to produce crystallites
- Resulting powder sintered
- Cut into wafers
- Wafers structured by orthogonal saw cuts
- Interstitial gaps filled with reflecting polymer

Image quality Z-sharp Technology

SIEMENS

Z-sharp Technology

COMARE 12

The impact of personally initiated X-ray Computed Tomography scanning for the health assessment of asymptomatic individuals

Recommendations 7-9 CT of the lung, heart and colon

- Lung CT scanning of the asymptomatic individual cannot be justified and should not be made available.
- CT scanning to determine coronary calcification should be undertaken only on intermediate risk individuals, unless referred by a specialist. Scans should not be performed more than once every three years.
- Screening for colorectal cancer using CT colonography outside of NHS screening programmes should only be undertaken over the age of 50, and not more than once every 2- 3 years. Individuals at high risk should be assessed by specialists. CT colonography screening of high-risk individuals should be part of a multidisciplinary care package.

Nuclear medicine/SPECT

- Requires radiolabel
- Photon energy 80-400keV
- Radiation dose per administration
- Spatial resolution ~ 5-10mm/6-12mm
- Temporal resolution ~ 50ms/2-10min

Bone Scan – Metastatic Disease

Cord Compression

Obstructed kidney

Use of ¹²³I-FIAU to image the distribution of replicating HSV1716 Herpes Simplex Virus in the treatment of glioma

T2 MRI

Non-specific washout following uptake through the damaged blood brain barrier

Increased retention at 24 hours consistent with ¹²³I-FIAU binding to viral thymidine kinase

¹²³I-FIAU at 1.5 hours

•HSV1716 has been modified to replicate only in rapidly dividing cells

•It can therefore selectively kill tumour cells

•The virus is injected directly into the region of the tumour

•The distribution in-vivo of this virus has to be determined so that delivery can be optimised

•¹²³I-FIAU binds to thymidine kinase which is a marker of replicating HSV

Drug delivery studies

RCS abdomen

SC

NanoSPECT/CT Tumour Marker

- Requires radiolabel
- Photon energy 511keV
- Radiation dose per administration
- Spatial resolution ~ 3-7mm
- Temporal resolution ~ 2-5min
- On-site/nearby cyclotron (except F-18)

Scintillator Properties

	NaI	BGO	GSO	LSO	LYSO
Density (g.cm-3)	3.7	7.1	6.7	7.4	7.1
Effective Z	51	75	59	66	64
Hygroscopic?	Yes	No	No	No	No
Rugged?	No	Yes	No	Yes	Yes
Decay time (ns)	230	300	60	40	40
Relative light yield	100	15	25	75	83

Scanner Detectors

Channeled scintillation light

Post chemotherapy assessment with PET-CT

Breast lesion larger post chemotherapy - 42.5x27.5mm to 47.5x27.5mm on CT suggesting progressive disease.

But on PET SUV decreases from 18 to 8 suggesting partial metabolic response. On PET the centre is photopaenic due to central necrosis and this may explain why the lesion is larger.

Stage IIA HL: pre-treatment Planned treatment: 4 chemo + RT

Stage IIA HL: after 2 cycles chemo

Stage IIA HL: after Radiotherapy

Detector Improvement (1)

To improve Spatial Resolution:

Make crystal elements smaller Make the detector ring diameter larger

To improve Sensitivity:

Make crystal elements thicker Make the detector ring longer Make the ring diameter smaller Measure the data differently

Detector improvement (2)

To improve Scatter fraction:

Find a detector material that has better energy resolution properties Measure the light generated more accurately Insert septa in front of the detectors Shield the detectors more effectively **To improve Random fraction:** Improve accuracy of timing measurements Insert septa in front of the detectors Shield the detectors more effectively from

radiation originating outside the FoV.

Noise Propagation in the Reconstruction

Backprojecting several events (no filtering)...

Conventional PET

Time-of-Flight PET

More counts in same area
Higher signal-to-noise ratio
Higher effective NEC/sensitivity

Impact of Time-of-Flight information

TOF

35 cm Diameter "Big IEC" Phantom (large patient) 4 mCi, 8:1 hot spheres, 3 min. acquisition time

Future Scintillator Development

Promising scintillators with high light output and fast decay time

	LaBr ₃	CeBr ₃	LuI ₃
Density	5.3	5.2	5.6
Energy Resolution	3.6 %	4 %	—
Light Yield (rel. LYSO)	~ 2.1	~ 2.1	~ 1.6
Decay Time	20 ns	17 ns	25 ns

eXplore Vista & Vista-CT

Phoswich Detector Modules

Shorter Crystal = Less SensitivitySmall Ring = Less Resolution Uniformity

Small ring diameters magnify parallax effect ... critical in determining spatial resolution uniformity

- Longer Crystal = Greater Sensitivity Small Ring Diameter with Phoswich = Improved Resolution Uniformity
- Depth of Interaction (DOI) = Reduces
 parallax effect significantly and
 maintains resolution throughout FOV

eXplore Vista & Vista-CT

Sensitivity:

Resolution:

Crystal dimensions: Crystal depth:

Axial FOV: Transaxial FOV: Timing resolution: Scan geometry: Scan Modes:

Corrections:

4% @ 250-700 keV 6.5% @ 100-700 keV < 1 mm w/3D-OSEM 1.2 mm w/2D-OSEM 1.45 mm w/FBP1.45 mm x 1.45 mm 15 mm (8 mm LYSO + 7 mm GSO)

47 mm 68 mm diameter 1.5ns 3D (w/o septa) Static, WB & WB Dynamic, Dynamic, Gated and List Mode Reconstruction Algorithms: FBP, 2D-OSEM, 3D-OSEM Ge-68 & CT-based attenuation correction, Randoms, Deadtime, Scatter, Decay, Normalization

PET/MR

- PMTs affected by magnetic field
- Fibre optics used to conduct light outside magnet
 - Loss of signal
- Replace PMTs with APDs

Processing

- Analog processing at detector
- PCB coated by 10µm copper
 - EM shielding
 - Thin enough for no eddy currents

PET/MR tumour image

Cherry et al., UC Davis

Megavoltage Imaging

• Photon energy 4-25MeV

Target Volumes

- GTV Gross Target Volume includes tumor that can be seen in treatment planning images (typically CT, MR or PET).
- CTV Clinical Target Volume includes the GTV plus regional lymph nodes and tissue adjacent to the GTV that may contain microscopic tumor cells. The CTV is what the physician wants to treat.
- PTV Planning Target Volume includes CTV plus a margin of healthy tissue to account for inter- and intrafraction organ motion.
 In order to treat the CTV, the planner must design a treatment plan for the PTV.

MLC Beam Delivery

Key C-Series[®] Technology:

- 120 leaf high resolution MLC
- Dual redundant safety readout

PortalVision Dosimetry

- Application
 - Pre-Treatment Verification and QA
 - Line Profile
 - Gamma Analysis
 - Results Stored in VARiSVision
 with the Treatment Plan
- Qualitative Comparison
 - Predicted Portal Dose

Acquired

Portal Imager

.....

FDA 510(k)

Dynamic Targeting with On Board Imaging

- What data can we acquire ?
 - Single Shot KV and MV
 - Cone Beam CT
 - Real Time Flouro
 - Related KV and MV Images

IGRT System

X-ray Source - Varian G242 X-ray tube; 40 to 125 kVp Imaging Panel - Varian PaxScan 4030a, a-Si 2048 x 1536 pixel resolution up to 15 fps Robotic Arms - 3 pivot points: similar to shoulder, elbow and wrist completely retractable Infrared pendant - controls all three arms (PortalVision and On-Board Imager) Dedicated Control Console - remote motion of all three arms from the control console **Remote Couch Motion**

Fused kV and CBCT image

CBCT Re-plan

Acknowledgements

- Colleagues in NHSGGC
- GE
- Philips
- Siemens
- Varian

Medical Applications of Position Sensitive Detectors

Alex Elliott Dept of Clinical Physics University of Glasgow