

Detectors for SR and Spallation Neutron Sources

Roger Eccleston
Science & Technology Facilities Council

Peak brilliance

Years

SLAC Linac

LCLS Injector

Photon Beam Lines

3 km

Complex Experiments

- Weak signals
- Pump probe
 - Changes in spin states fluorescence
 - Non-equilibrium dynamics
- Tomography
- Isotopic substitution

New Facilities, increased demands

- New science, new experiments, new demands
 - Higher flux
 - Higher resolution
 - Time
 - Space
 - Dynamic range
 - Energy range
 - Efficiency
 - Stability
 - Low noise

Туре	Size	Pixel size	Count rate (s ⁻¹)	Efficiency (at 1 Å)	γ Sensitivity	Stability (% d ⁻¹)	Energy range (meV)	Candidate technology	Time scale
Reflectometers	$300\times 100mm^2$	$0.5 \times 100\text{mm}^2$	10 ⁶	80%	$< 10^{-17}$	<1	1-150	Gas or scintillator	now
Reflectometers 2D	$300 \times 300 \mathrm{mm^2}$	$0.5 \times 0.5 \mathrm{mm^2}$	10^{6}	80%	$< 10^{-7}$	<1	1-150	Gas	TS-2/now
SX low L ₂	$>200 \times 200 \mathrm{mm^2}$	$3 \times 3 \text{ mm}^2 1 \times 1 \text{ mm}^2$	106	80%	$< 10^{-7}$	<1	1-150	Scintillator low parallax LiGdBO	TS-2/now
SX med, high L_2	$>$ 200 \times 200 mm ²	$1 \times 1 \text{ mm}^2$	10^{6}	80%	$< 10^{-7}$	<1	1-150	Gas	Beyond TS-2
Radiography, tomography	$20 imes 20 \mathrm{mm}^2$	$0.02-0.2 \text{ mm}^2$	10^{6}	80%		< 0.1	1-150	Si active pixel	now
Monitors	$60 imes 60 \mathrm{mm}^2$	$1 \times 1 \text{ mm}^2$	10^{7}	Low		< 0.1	1-1500	Si or gas	now
High energy	$100 \times 100 \mathrm{mm^2}$	$5 \times 5 \text{ mm}^2$	10^{7}	Epithermal		< 0.5	1 - 100,000	YAP	now
SANS	$1 \times 1 \text{ m}^2$	$5 \times 5 \text{ mm}^2$	106			< 0.5	1-50	Scintillator or gas	TS-2
SANDALS/NIMROD	$200 imes 200 \mathrm{mm}^2$	$200 imes 10 \mathrm{mm}^2$	10^{7}	Epithermal	$< 10^{-6}$	< 0.1	1 - 30,000	Scintillator or gas	TS-2
Powder	$600 imes 200 \mathrm{mm}^2$	$3\times 200mm^2$	10^{7}	80%	$< 10^{-7}$	< 0.1	20-150	Scintillator or gas	TS-2
Inelastic	$1 imes 1 \ m^2$	$10 imes 25 \mathrm{mm}^2$	10^{6}		$< 10^{-7}$	< 0.1	1-1500	Gas	TS-2
Inelastic (BS)	$5\times 100mm^2$	$5\times 100mm^2$	10^{6}		$< 10^{-7}$	< 0.1	1–50	Gas	Beyond TS-2

Neutron Detectors

MERLIN

Sample mass: 32 g $E_i = 50 \text{ meV}$ Chopper speed = 300 Hz 778 μ Ahrs T = 300 K, cut 10<E<13 meV

T. G. Perring, R. Ewings MnSi single crystal

MAPS

Sample mass: 50 g $E_i = 50 \text{ meV}$ Chopper speed = 1887 μ Ahrs T= 300 K, cut 10<E<13 meV

ISIS TS2

Low energy transfer spectrometer

Detector array 4m high array at 3.5 m radius -35 to +135 degrees horizontal coverage Area 40 m² Position resolution 25 mm FWHM Energy range 0 – 80 meV

\$ \$

detector assembly

25 mm diameter 4 m long resistive wire detectors 224 for day one

Detector array ~ 1m high array at 2.2 m radius ± 10 to ± 170 degrees horizontal coverage Position resolution 8 x 8 mm pixels Wavelength range 1.5 – 15 Å

Large area powder / single crystal diffractometer for the study of magnetic materials

Resistive wire technology ~1500 detectors I mm³ crystal 100 kHz per detector 5 mm³ crystal 12 MHz per detector

8 mm diameter 1 m long resistive wire detectors, like D22 760 for day one spanning 10 to170 degrees at 2.2 m radius

High efficiency at 10 eVHigh stability - 0.1% change in count rate per several days2110 pixels ~10 mm x 200 mmTotal area 4.2 m

NIMROD

scintillation detector

18 detector elements
200 x 10 mm²
60 modules for day 1
2.16 m² detector –
60 m² scintillator

NIMROD

- 60 modules for day one
- 53 assembled to date
- **30** fully tested on neutron source and ready for installation

Low angle bank spanning 0.5 to 3 degrees under development

SANS 2d

get station project

•Active area : 1m x 1m •Count rate: 2 x 10⁵ n/s at 10% deadtime •Neutron efficiency: 50% at 2 Å •Position resolution : 5 x 5 mm²

INTER 1.2 mm

scintillation detector

Fibre coupled ZnS scintillation detector Linear position sensitivity, 1.2 mm resolution

INTER 1.2 mm

cintillation detector

Wavelength Shifting Fibre

SPATIATION IN TRACE

Gas Detectors

FastGas

10 bars ³He, 4bars CF₄ >90% efficiency for 1Å neutrons

Data from CRISP instrument on ISIS

100 times greater rate performance than existing ³He tubes, with no noticeable degradation in performance

Neutron reflection from ⁵⁸Ni sample. Black curve ³He tube, red curve FastGas

OSMOND

- Position sensitive, parallax free neutron detector
- Position resolution of 0.5mm or better (FWHM)
- Neutron detection efficiency \geq 50% @ I Å
- A local count rate performance of at least 10⁵ counts per second
- A dynamic range of 6 orders of magnitude
- A gamma sensitivity of 10⁻⁸ at 1.3MeV

Photon Detectors

Hybrid Pixel Detectors

• Hybrid pixel, photon counting

- No dark current
- Excellent point spread function
- High quantum efficiency
- Short readout time

PILATUS

- 6M
 - -5×12 modules
 - 2463 x 2527 pixels
 - 424 x 435 mm² active area

Medipix

- Medipix I
 - 170 μ m pixels
 - 64 x 64 pixels per chip
- Medipix 2
 - 55 µm pixels
 - 256 x 256 pixels per chip
 - 3 sides buttable
- Medipix 3
 - Mitigates charge diffusion

CZT-HEXITEC

- CZT has a good stopping power for high energy X-rays in many applications (synchrotrons, space, HEP, nuclear, medical)
- Gives radiation-hard detectors in proton environments (HEP and space)

Low temperature, low stress bump bonding for CZT

Low temperature stud bonding process

Gold Stud Bonding

ERD2004 module with 2mm thick CZT detector

X-ray image and spectrum taken with ERD2004 and Mo X-rays at 17keV bonded at RAL to 500um silicon detector.

Pixels for XFEL

- FEL sources deliver bright short pulses of radiation
- Requires high performance pixel systems

XFEL LPAD

European XFEL, LPAD Sensor requirements and timescales

- •Silicon sensors to convert high flux images of coherent 12keV X-rays, bump bonded to ASICs. Use 500um thick DC coupled Si detector
- •X-rays arrive in 100 femto second pulses every 200 nano seconds. Charge completely cleared for next pulse.
- •250 detectors (= 80 wafers) per Mega-pixel area
- •First sensors ready end 2008
 - First system ready mid 2009
 - 1Mega-pixel system ready end 2010
 - Multi-megapixel systems (16-32 total) ready end 2012.

Electron bunch trains; up to 3000 bunches in 600 μ sec, repeated 10 times per second. Producing 100 fsec X-ray pulses (up to 30 000 bunches per second).

LPAD ASIC

CMO8 Image Sensor Integrated Circuit Architecture Analog-to-Digital Conversion

MYTHEN

Silicon sensor:

- 1280 strips
- 8 mm long
- 50 µm pitch
- 300 µm thick.

Read out chip:

- 128 channels
- low noise preamp (noise ≈ 230 e⁻)
- 18 bit counter
- Read-out time: 250 µs
- Count rate: 1 MHz per channel

- Angular coverage: 60°
- Number of channels: 15000
- Angular resolution: 0.004°
- Read-out time: 250 µs

micro-strip Si and Ge

XSTRIP

micro-strip Si and Ge

2.5 Ln((lo-lod)/(lt-ltd)) 1.5 — 1B' - 10B' ummon m 50B' 0.5 -500B' - 5000B' 550 800 850 600 650 700 750 500 -0.5 strip

Fe foil vs integrated bunches

XH System on ESRF

HOTWAXS

8 precision mounted MSGC modules see NIM A580 (2007) p1526

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

HOTWAXS

- Position sensitive, parallax free, MSGC based, photon counting detector for combined SAXS/WAXS, XAS/XRD experiments
- 512 independent channels of preamplifier, scaler and discriminator (scalers and discriminators remotely located)
- Channel count rate of I MHz, Global count rate 500 MHz
- Position resolution of 0.16° for 8keV x-rays
- 60° angular coverage, 400mm sample to detector distance
- 50mm active gas depth

Time framing capability of HOTWAXS system (16.1)

Hotwaxs on Diamond 122

RAPID2

- Amplifier per wire MWPC
- Micro-gap technology
- Radial Field development
- Interpolation

	SAXS	WAXS		
Parameter	Value	Value		
Detector Style	60° Quadrant	Linear		
inergy Range	4-12 keV	4-12 keV		
ample - Detector spacing	1200-4000 mm	366mm		
ngular range:	3 - 9 degrees	60 degrees		
angular Resolution:	0.03-0.09 degrees	0.06 degrees		
Detector Length:	200 mm	384 mm		
patial Resolution:	0.375 mm	0.375 mm		
ixel size:	0.094 mm	0.094 mm		
Count Rate (Global):	20 MHz	20 MHz		
Count Rate (Local):	1 MHz /mm	1 MHz /mm		
Differential non-linearity:	5%	5%		

HgCdTe (Mid-IR) Arrays

DAIRS data

FPA-98747A2 PIXELS

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

Pixel map and performance

DAIRS Readout

DAIRS detectors and pre-amp

Neutron omissions

- Novel Scintilators
 - LiGdB?
 - Nano-particulate scintillators
 - YAP
 - Gas

- GEM
- Micromegas
- Brookhaven?
- Solid State
 - Si APS

Photon omissions

• CCDs

- Structured scintillators
- High purity Ge, GaAs
- Si drift, DEPFET
- APD
 - Gas
 - GEMS, Micro-pin arrays

Acknowledgments

- Richard Farrow
- Jon Headspith
- Marcus French
- Dom Duxbury
- John Lipp
- Eric Schooneveld
- Tatiana Guidi
- Toby Perring
- Nigel Rhodes
- Paul Sellar
- Renato Turchetta